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We prove exponential convergence to equilibrium (L 2 geometric ergodicity) for 
a random walk with inward drift on a sub-Cayley rooted tree. This random- 
walk model generalizes a Monte Carlo algorithm for the self-avoiding walk 
proposed by Berretti and Sokal. If the number of vertices of level N in the tree 
grows a s  CN~#NN ~-1, we prove that the autocorrelation time z satisfies 
(N)2<~z<~ (N)  l+r. 

KEY WORDS: Markov chain; random walk; geometric ergodicity; dynamic 
critical phenomena; Monte Carlo; self-avoiding walk. 

1. I N T R O D U C T I O N  

The s tudy of  dynamic  cri t ical  p h e n o m e n a  in s tat is t ical  mechanica l  mode l  
systems is of  interest  for two reasons.  Firs t ,  and  mos t  obviously ,  to the 
extent  tha t  the ma thema t i ca l  dynamics  is a reasonable  mode l  of  a real 
physical  dynamics ,  the conclus ions  are of  direct  physical  interest.  A second 
and more  subtle  reason arises out  of the widespread  use of  dynamic  M o n t e  
Car lo  me thods  as a tool  for s tudying  the s ta t ic  proper t ies  of  s tat is t ical  
mechanica l  systems/~'2) M o n t e  Car lo  studies of  crit ical p h e n o m e n a  have 
been great ly  h a m p e r e d  by cri t ical  s lowing down:  the au tocor re l a t ion  t ime z 
of the M o n t e  Car lo  s tochast ic  process  grows to infinity as the cri t ical  po in t  
is app roached ,  which leads to a co r re spond ing  growth  in the s tat is t ical  
e r ror  bars.  3 The  ra te  of  g rowth  of r is thus a crucial  factor  in de te rmining  
the s tat is t ical  efficiency of  the M o n t e  Car lo  a lgor i thm.  

t Department of Physics, New York University, New York, New York 10003. 
2 Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903. 
3 Each block of data of length ~2~ can be considered, roughly speaking, to contribute one 

"statistically independent" data point. Therefore, the "effective sample size" from a Monte 
Carlo run of length n is ~n/2z, resulting in statistical error bars of order (z/n) 1/2. For a more 
detailed treatment, see ref. 1, Sections 1.2.3 and 1.2.4, and ref. 3, Section 4.1. 
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The present paper is one of a series by the authors and their 
collaborators (3-12) aimed at studying the dynamic critical behavior of 
Monte Carlo algorithms in statistical mechanics and quantum field theory. 
In this paper we study a problem--random walk with inward drift on a 
countable rooted graph-- that  is a generalization of a Monte Carlo 
algorithm for the self-avoiding walk (SAW) proposed by Berretti and 
Soka113i and used subsequently by several groups. (13 17) 

The Berretti-Sokal algorithm generates self-avoiding walks with one 
endpoint fixed at the origin and the other endpoint free, in a variable-length 
ensemble controlled by a monomer activity 3; as 3 approaches the critical 
point /?c, the average walk length ( N )  tends to infinity. The elementary 
moves of the algorithm are to delete the last bond of the walk (AN= - 1 )  
or to append one bond to the end of the walk (AN= +1); the relative 
probabilities of these two moves are chosen so as to leave invariant the 
Gibbs measure zc B. 

Now the space of all self-avoiding walks (of arbitrary length) starting 
at the origin and ending anywhere has the structure of a rooted tree: the 
root is the zero-step walk, and a walk co' is declared to be a child of co if it 
is a one-step extension of co. It is then easy to see that the Berretti-Sokal 
algorithm is precisely a random walk with inward drift on this tree. 

We can now abstract the situation: given an arbitrary countable 
rooted graph G (satisfying certain growth restrictions) and an "activity" 3, 
we define on G the "Gibbs" measure ~ and the corresponding random 
walk with inward drift. The question is now: For  which graphs G does this 
random walk have exponential convergence to equilibrium (z < oe) for all 
/? </?c? And if there is exponential convergence to equilibrium, how does 
the autocorrelation time r behave as/~-~ 3c? 

We are unable to answer these questions in general, but for a very 
interesting class of graphs--the sub-Cayley rooted trees--we prove rigorous 
upper and lower bounds on z which are close to, but not quite, sharp. A 
connected rooted graph G is said to be sub-Cayley if, for each vertex x e G, 
the rooted graph of descendants of x (with x as its root) is isomorphic to a 
rooted subgraph of G. The key fact is that the space of all SAWs is a sub- 
Cayley rooted tree: this expresses the fact that any segment of a self- 
avoiding walk must itself be self-avoiding. We are thus able to analyze a 
class of Markov chains which includes as a special case the Berretti-Sokal 
algorithm for SAWs. 

To state our main result, assume for simplicity that the number of 
vertices of level N in the tree grows as Cu'~ ~tNN~-I; here 7 is a "critical 
exponent" and the sub-Cayley property implies that 7 >~ 1. Then we prove 
that 

( N )  2 ~< z <,% ( N )  1 +7 (1.1) 
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(Note that in the SAW case 7 is believed to be quite close to 1:7 = 43/32 in 
d =  2, ~ 1.16 in d =  3, and = 1 in d~> 4.) We had originally hoped to prove 
the Berretti-Sokal (3) conjecture z ~ ( N )  2, but in fact we are not able to do 
so, 4 and this for a very good reason: it is probably false! (18) The exact 
dynamic critical behavior in this model is thus an open question. 

For general graphs G, we can offer only some partial results: a lower 
bound v > ( N )  2, and an upper bound which in general does not extend all 
the way to the critical point. In fact, we give an example- -a  "maximally 
unbalanced tree"(7)--in which exponential convergence to equilibrium 
breaks down well before the critical point. Thus, upper bounds on z near 
the critical point require some structural hypothesis on the graph G; being 
a sub-Cayley rooted tree is sufficient but presumably far from necessary. It 
is an open problem to find a weaker sufficient condition. 

Finally, we mention that very similar results (more general but slightly 
weaker) have been obtained concurrently by Lawler and Sokal, (7) using 
very different methods. 

2. P R E L I M I N A R I E S  

In this section we review briefly the theory of discrete-time Markov 
chains on a countable state space, (19) with emphasis on the L 2 spectral 
properties of the transition probability operator. Most of this theory can be 
generalized to Markov chains on an arbitrary (measurable) state space (2~ 
and to continuous-time Markovian jump processes, but we shall not need 
this here. 

Consider a Markov chain on a countable state space S, with transition 
n(")-(P"~ be the probability matrix P =  {p(i-- , j )}i , j~s = {Pu}ij~s.  Let r0  - , -  ,~ 

n-step transition probability from i to j. Then the Markov chain is said to 
be irreducible if for each pair i, j �9 S there exists an n ~> 0 for which pb") > 0. 
The chain is said to be irreducible and aperiodic if for each pair i, j �9 S there 
exists an no = no(i, j)  such that p,~") > 0 for all n >t no(i, j). All the chains to 
be considered in this paper  are irreducible. 

Let mij =-Ei [z s] be the mean hitting time to state j starting in state i. 
(If j = i ,  this is the mean return time from state i to itself.) For  an 
irreducible chain, it can be shown (19) that if mii < oo for at least one state i, 
then in fact mij < oe for all pairs i, j. A Markov chain with this property is 
said to be positive-recurrent. 

4 An early claim by one of us Ill) to have proven z ~ ( N )  2 turned out, on closer inspection, to 
be mistaken. 
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A probability measure re= {rci}~ s on S is said to be a stationary 
distribution for the Markov chain if 

~ rci pi:= rrj (2.1) 
i 

for all j e S. The basic limit theorem for Markov chains is the following 
(see, e.g., ref. 19): 

T h e o r e m  2.1. Let P be the transition matrix for an irreducible 
Markov chain. Then: 

(a) A stationary distribution exists if and only if the chain is positive- 
recurrent. In this case the stationary distribution is unique, and it is given 
by ni = 1/mii. 

(b) lim u ~ ~(1/N) Z~= a ~u~ =nj  for all i, j. 

(c) If the chain is aperiodic, then lim, n!n) -= rcj for all i, j. ~ oO r t j  

Thus, an irreducible positive-recurrent Markov chain converges to 
equilibrium as time goes to infinity, irrespective of the initial state. Much 
work has been done on the rate of convergence to equilibrium (see, e.g., 
ref. 20 and the references cited there); the present paper is a further 
contribution to that question. 

From now on we assume that the Markov chain is irreducible and 
positive-recurrent, and we let rc denote the unique stationary distribution. 
Let lP(n), 1 <-N p <~ co, denote the Banach space of complex-valued functions 
on the state space S having finite norm 

i f f l fp=f[Z ir t i l f ( i ) lP] l /p ,  if l ~ < p < o o  (2.2) 
(supi If(i)[ if p = oo 

In particular, /2(7C) is a Hilbert space with inner product 

(f, g) =- Y', ni f ( i )* g(i) 
i 

(2.3) 

Let H be the expectation operator 

(Hf)(i) = ~ rtj f( j)  for all i (2.4) 
J 

On each space lP(lr), 1-1" is an idempotent contraction with range equal to 
the constant functions; on 12(n) it is self-adjoint (hence an orthogonal 
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projection). Now define the action of the transition probability matrix on 
functions by 

(Pf)(i) = ~ Pijf(J) (2.5) 
J 

It is not hard to prove the following facts(21): 

Proposition 2.2. Let P be the transition probability for an 
irreducible positive-recurrent Markov chain with stationary distribution re. 
Fix p c  [1, oe], and consider the action of P on the space lP(Tz). Then: 

(a) The operator P is a contraction. (In particular, its spectrum lies 
in the closed unit disk.) 

(b) 1 is a simple eigenvalue of P, as well as of its .adjoint P*, with 
eigenvector equal to the constant function 1. (In particular, P H =  HP = 17.) 

(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of 
P (and of P*) on the unit circle. 

The goal of this paper is to prove, for certain Markov chains, that the spec- 
trum of P r 1• (or equivalently P - H )  on 12(rc) stays strictly away from 
the unit circle. As will now be explained, this corresponds to a uniform 
exponential decay of all autocorrelation functions (for L 2 observables). 

Consider the Markov chain started in its equilibrium distribution re; 
let Xo, X1 .... ~ S be the successive states of the Markov chain. Let f be a 
real-valued function in 12(/Z). Then {f(X,)} is a stationary stochastic 
process with mean 

#f =- ( f ( X t )  ) = ~ 7"cif(i ) (2.6) 
i 

and unnormalized autocorrelation function 5 

cjAt) =- <f(xs) f(xs+,) > - #~  

= ~ f ( i ) [ r c i P ( i )  '1) - -  7~iT"Cj] f ( j )  
i,j 

= ( f  (p_/ / ) l t J  f )  (2.7) 

Typically, C~-(t) decays exponentially ( ~ e  -I'l/*) for large t; we define the 
exponential autocorrelation time 

t 
%xp.y = tim,_~sup _ log I Cjy( t)l (2.8) 

5 In the statistics literature, this is called the autocovariance function. 
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and 
r~xp= sup 27exp, f (2.9) 

f ~  12(rr) 

Thus, rex p is the relaxation time of the slowest mode in the system (it might 
be + ~ ) .  We now show that Zexp is directly related to the spectral radius of 
P - -  H: 

P r o p o s i t i o n  2.3. r ( P -  H) = e x p ( -  1/%xp ). 

Proposition 2.3 is an immediate consequence of (2.7) together with the 
following generalization of the spectral radius formula: 

P r o p o s i t i o n  2.4. Let Xbe  a complex Banach space, and let A be a 
bounded linear operator on X. Then 

r(A) = lim tIA'II 1/n = inf IlA"lll/" (2.10a) 
n ---~ ~ n ~ > l  

= sup lim sup IIAnxll 1/n (2.10b) 
x E g  n ~ o 3  

= sup lim sup 1(/, Anx)]l/" (2.10c) 
x ~ X , I ~ X *  n ~ c o  

If X is a Hilbert space, then also 

r(A) = sup lim supl(x, Anx)t 1In (2.10d) 
x ~ k  " n ~ c ~ 3  

Proof. The first line is the well-known spectral radius formula. 
[Sketch of proof: An analyticity argument shows that 

lim sup MA"ll~/n<~r(A)<~ inf IIA~II ~/~ 
n ~ c c ~  n ~ > l  

(ref. 22, pp. 235-237); alternatively, one can use submultiplicativity to show 
that l i m ~  ~ IIA~II ~/~= inf~>~ IIAnll t/~ and then continue with the rest of the 
analyticity argument (ref. 23, pp. 124-125).J 

Clearly, for all x ~ X and l ~ X*, 

lim sup I(l, A'x) l  1/n ~ lim sup [IA"xll 1/n ~< lim sup [IA"II 1/n 
n ~  n ~  n ~  

On the other hand, if 

2>c(A)=-- sup l imsup l ( l ,A"x ) l  1/" 
x c X ,  I ~ X *  n ~  

then the sequence {2-~(l ,  Anx)}~_i  is bounded for all x E X  and l~X*.  
By the uniform boundedness theorem, it follows that the sequence 
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{2-"  IIA~]I }.% 1 is bounded, hence that lim sup. ~ 0o IIA~II 1In ~ i~. Since 
2 > c(A) was arbitrary, we conclude that lim sup.  ~ oo IIA"II ~/" <~ c(A), 

If X is a complex Hilbert space, we have by the polarization identity 

1 
(x, A"y) = ~ [((x + y), A"(x + y)) - ((x - y), A"(x - y) ) ]  

i 
- -  [ ( (x+iy) ,  A " ( x + i y ) ) - ( ( x - i y ) , A " ( x - i y ) ) ]  (2.11) 

4 
so that 

sup lim sup ](x, A"y)I 1/. <~ sup lirn sup t(x, A"x)] 1In 
x , y ~ X  n ~ o o  x E X  n ~ o o  

Remark. This proof  is implicit in Halmos (ref. 24, pp. 232-233) and 
probably other places. 

In general the supremum in (2.10d) cannot be restricted to a dense 
subset D c X: take, for example, X =  12(Z), D =vectors  of finite support, 
and A = shift. However, if A is self-adjoint, we have: 

Proposi t ion 2.5. Let X be a complex Hilbert space and let A be a 
bounded self-adjoint operator on X. Then 

4]A[J = r(A) = sup lim sup ](x, A"x)J 1/. (2.12a) 
x ~ D  n ~ o o  

for any dense set D c X. 
If, in addition, X is equipped with a distinguished complex 

conjugation 6 and A is reality-preserving, then 

]]A H = r(A) = sup lim sup ](x, A"x)] 1/. (2.12b) 
x E D  n ~ o o  

for any dense set D c Xreal. 

Proof. It is well known that HAII=r(A). Now let EA(-) be the 
spectral projections for A. By definition of r(A) we have EA(S~)v~O for all 
e > 0, where 

St = [ - r ( A ) ,  - r ( A ) + e )  w ( r ( A ) - e ,  r(A)] 

So fix e > 0 and choose x e D such that EA(S~)x r 0. Then 

f. 

(x, A"x) = J 2" (x, EA(d2)x) (2.13) 

6A c o m p l e x  con juga t ion  is an antilinear m a p  C: X - - * X  which is involutive ( C 2 = I ) .  An 
element x e X is called rea l  if C x  = x; we let Xr~al be the set of all real elements of X. A linear 
opera tor  A on X is called rea l i t y -preserv ing  if A x  is real whenever x is. 
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which  for  n even is 

~> [ r ( A )  - s ] "  (x, E~(S , ) x )  (2.14) 

wi th  (x, E A ( S , ) x ) =  [IEA(Ss)x]]2> O. Since s is a r b i t r a r y ,  the c l a im  (2.12a)  
fol lows.  

N o w  a s s u m e  tha t  X has  a d i s t i n g u i sh e d  c o m p l e x  c o n j u g a t i o n  a n d  t ha t  
A is se l f -ad jo in t  a n d  rea l i ty -p rese rv ing .  Then ,  if x = y + iz with  y,  z real ,  we 

have  

(x, A " x ) =  (y, Any)+ (z, A"z) (2.15) 

f rom which  (2.12b) eas i ly  fol lows.  | 

Remark. P r o p o s i t i o n 2 . 5  is impl ic i t  in a p a p e r  of  H o l l e y  on  
s tochas t i c  I s ing  m o d e l s  (ref. 25, L e m m a  1.13). 

F ina l l y ,  a M a r k o v  cha in  is ca l led  reversible v (wi th  respec t  to  the 
m e a s u r e  it) if 

~i pij= rcj pji (2.16) 

for  all  i, j E S .  [ -Summing  (2.16) ove r  i, we see t ha t  the  m e a s u r e  ~ is 
necessar i ly  a s t a t i o n a r y  d i s t r i b u t i o n  for  P . ]  Reve r s ib i l i t y  is equ iva l en t  to  
the  se l f -ad jo in tness  of  P as an  o p e r a t o r  on  the  space  F ( n ) .  Thus ,  for  rever-  
s ible M a r k o v  cha ins  the  s p e c t r u m  of  P lies in the  i n t e rva l  E - 1, 1 ],  a n d  texp 
is d e t e r m i n e d  by  the s p e c t r u m  of  P r 1 �9 c loses t  to  e i the r  i o r  - 1 .  F o r  
m a n y  p u r p o s e s ,  however ,  the  s p e c t r u m  n e a r  - 1  is of  l i t t le  i m p o r t a n c e ;  
on ly  the  s p e c t r u m  n e a r  1 ma t t e r s .  8 There fo re ,  it is w o r t h  def in ing  a 
modified autocorrelation time V'ex p b a s e d  on  the s p e c t r u m  n e a r  + 1 on ly :  

- 1  
t '  (2.17) 

exp = l o g [ s u p  s p e c ( P  - H ) ]  

( c o m p a r e  P r o p o s i t i o n  2.3). 

7 For the physical significance of this term, see Kemeny and Snell (ref. 26, Section 5.3) or 
Iosifescu (ref. 27, Section 4.5). 

8 For example, in Monte Carlo work, the statistical errors are proportional to (1 + 2)/(1 -2 ) ,  
where 2 is in the spectrum of P [see, e.g., ref. 6, Eqs. (2.19) and (2.23); and see re['. 28 for a 
rigorous central limit theorem]. Thus, spectrum near - 1  is actually helpful; only spectrum 
near + 1 corresponds to harmful critical slowing down. Another way of seeing that spectrum 
near - 1  is harmless is to note that replacing P by ( I+  P)/2 removes all spectrum near - 1 ;  
algorithmically, this corresponds to randomly deciding at each time step either to use P or 
else to do nothing (each with probability U2). Of course, from a practical point of view such 
an algorithm would be rather silly--it is just the original algorithm with half of the time 
wasted doing nothing--but the fact that it has rapid convergence to equilibrium implies, by 
a kind of reductio ad absurdum, that the original algorithm must also have rapid convergence 
to equilibrium for all practical purposes. 
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3. R A N D O M  WALK WITH I N W A R D  DRIFT 
ON A COUNTABLE ROOTED GRAPH 

In this section we define our random-walk model and 
properties. Our graph-theoretic terminology generally follows 
Fisher,(29) except that our graphs need not be finite. 

Let G = (V, E, 0) be a countable, connected, rooted graph 
set V, edge set E, and a distinguished vertex 0, called the root. 

analyze its 
Essam and 

with vertex 
The level of 

a vertex x, denoted Ix[, is the number of edges in the shortest path which 
connects x to the root. We write cN for the number of vertices of level N 
( N =  0, 1, 2,...). If x is adjacent to y, then fYl must be either [xl - 1, Ixl, or 
Ix[ + 1; we call y a parent, sibling, or child of x, respectively, and write p(x), 
s(x), and c(x) for the number of parents, siblings, and children of x. Each 
vertex other than the root must have at least one parent. We remark that G 
is a tree if and only if each vertex other than the root has precisely one 
parent and no siblings. Finally, we say that y is a descendant of x (and that 
x is an ancestor of y), denoted x ~ y, if there exists a path of length lY[ that 
contains y, x, and the root. Equivalently, y is a descendant of x iff it is 
either x itself, or a child of x, or a child of a child of x, etc. We denote by 
V~ the set of all descendants of x, and by Gx = (Vx, Ex, x) the associated 
rooted graph with x as the root. 

Rooted graphs G=(V,E,O)  and G'=(V' ,E' ,O')  are said to be 
isomorphic if there is an isomorphism of ( V, E) onto ( V', E ')  which takes 0 
onto 0'. A rooted subgraph of G = ( V , E ,  0) is a rooted graph G I =  
(V~, E; ,  0), where (Va, El)  is a subgraph of (V, E) containing 0. 

A connected rooted graph G = (V, E, 0) is said to be Cayley (resp. sub- 
Cayley) if, for each x~  V, the rooted graph Gx = (Vx, E~, x) is isomorphic 
to G (resp. to a rooted subgraph of G). One example is the Cayley rooted 
tree of  order q, in which the root has q children, each of these has q 
children, and so on indefinitely. Several important examples of sub-Cayley 
rooted trees will be given below. Note that every sub-Cayley rooted graph 
satisfies the submultiplicativity condition CM+N ~ CMCN (all M, N). 

We now restrict attention to graphs satisfying 

sup p(x) <~ Mp < cO (3.1) 
x 

sup c(x) ~< M c < oo (3.2) 
x 

It follows that 

# =- lim sup r l /N ~ M c < oo (3.3) 
~ N  

N o o o  
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We call/~ the growth factor of the rooted graph G. We define for ti i> 0 the 
generating function 

Z(fl)= ~_, tilxl= ~ CzvtiN (3.4) 
x c V  N = 0  

Z(ti) is finite for 0 ~< ti < / i  1 and infinite for ti > #-1. 
Fix now a countable, connected, rooted graph G = ( V, E, 0) satisfying 

(3.1)-(3.2), fix ti > 0, and fix M~> Mo = supx[p(x ) + tic(x)]. We can then 
define a discrete-time Markov chain with state space V having transition 
probabilities 

f 1/M 
.)tim 

if y is a parent of x 

if y is a child of x 

if y =  x 
otherwise 

(3.5) 

We call this Markov chain the standard discrete-time random walk on G 
with parameters (ti, M). It is an irreducible reversible Markov chain with 
invariant measure 

n(x) = const x tilxi (3.6) 

rc is finite iff Z ( t i )<  oe; in this case the Markov chain is positive-recurrent, 
and we normalize ~ to be a probability measure 

re(x) = Z(ti) -1 fllxl (3.7) 

Our goal in this paper is to prove bounds on the spectrum of P r 1 • 
considered as a (self-adjoint) operator on 12(~). Of particular interest is the 
behavior of the spectral gap m = - 1 - s u p  spec(P r 1• as ti approaches the 
critical point tic -= I~- 1. 

Similarly, we can define a continuous-time Markovian jump process 
with state space V having transition rates 

f i  if y is  a parent o fx  
J(x, y) = if y is a child o fx  (3,8) 

otherwise 

We call this process the standard continuous-time random walk on G with 
parameter ti. It is an irreducible reversible Markov process with invariant 
measure re, and is positive-recurrent iff Z ( t i )<  oe. Our proofs for the 
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discrete-time problem can easily be adapted to prove bounds  on the 
spectrum of Y ~ 1 l ,  where Y is the infinitesimal generator  defined by 

(J f ) (x )  = ~ J(x,  y ) [ f ( x )  - f ( y ) ]  (3.9) 
Y 

Examples.  1. Let V be the nonnegative integers Z + ,  let E be the 
nearest-neighbor bonds, and let the root  be 0. This rooted graph is in fact 
the Cayley rooted tree of order  1. The Markov  chain (3.5) is the r andom 
walk with constant  drift on Z + ,  with elastic boundary  condit ions at 0. Fix 
0 < fl < 1 = # -  1 and for simplicity take M = M0 ~ 1 + ft. Then the spectrum 
of P ]' 1 • is the interval [ - 2 ,  2] ,  where 

1 
2 = 2fl~/2/(1 + fl) = 1 ---~ ( N )  -2 + O ( ( N )  - ' )  

d 
( N )  - ~ 7r(x) Ixl = ~ log a(f l )  

x 

(see ref. 3, Appendix A, or ref. 30). For  other  properties of this example, see 
refs. 8, 31, and 32. 

2. Let 5r be a regular lattice 9 with coordina t ion  number  q (e.g., 
= Z a with q = 2d), and let V be the set of  all walks on ~ (of arbi t rary 

length) starting at the origin and ending anywhere. We give V the structure 
of a rooted tree by declaring the zero-step walk to be the roo t  and 
declaring co' to be a child of co if it is a one-step extension of co. This tree is 
precisely the Cayley rooted tree of  order  q. Some of the properties of the 
r andom walk (3.5) in this case have been computed  by Berretti and Sokal 
(ref. 3, Appendix A). 

3. Same as Example 2, but now let V be the set of  all self-avoiding 
walks on 5r which start at the origin and end anywhere. This is a sub- 
Cayley rooted tree: every descendant ~ of  co can be written uniquely as m 
c3 = co o co', where co, o '  E V, since every segment of  a self-avoiding walk 
must  itself be self-avoiding. However,  this is not a Cayley rooted tree, since 
not  every walk of  the form coo co' with co, co'E V is self-avoiding. The 
discrete-time r andom walk (3.5) (with M =  1 + flq) is the transition matrix 
of a Monte  Carlo algori thm for self-avoiding walks first proposed  by 
Berretti and Sokal33) 

9 A regular lattice is, by definition, a countable Abelian group which is endowed with a trans- 
lation-invariant graph structure. The coordination number of a regular lattice is the number 
of vertices adjacent to any given vertex; we assume that this number is finite. 

t0 The symbol o denotes concatenation. That is, if (o = (co o ..... cox) and co' = (~o~ ..... coX) with 
coo = o0~ = 0, then co o co' = (coo ..... coM, coM + co'l ..... coM + co~v). 
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One rather crude intuition about the behavior of the random walk 
(3.5) [or (3.8)-1 was set forth by Berretti and Sokal/3) They argued that if 
one looks only at the level Ixl, then this quantity executes a random walk 
with drift on the nonnegative integers. (This random walk is not precisely 
Markovian, nor are its transition probabilities precisely those of Example 1 
above, but no matter.) They then argued, by analogy with Example 1, that 
the hitting time to the root should typically be of order (N)2;  and since 
each visit to the root (or any other chosen state, for that matter) erases 
"memory" of the past, the autocorrelation time z should be of order ( N )  2. 

A more careful way of expressing this intuition is to consider the 
aggregated Markov chain, ~3~'9) in which all the states of a given level are 
lumped into a single state. The transition matrix of the aggregated chain 
can be thought of as (3.5) followed by a randomization operation which 
redistributes the walker uniformly around the states of its current level. 
This randomization would intuitively be expected to accelerate the con- 
vergence to equilibrium, and this can in fact be proven: the spectral gap of 
the aggregated chain is a rigorous upper bound on the spectral gap of the 
original chain. An analysis of the aggregated chain (under the assumption 
CN~IANN ~-1) then yields the rigorous lower bound z ~>const • ( N )  2 (see 
Section 4). 

The autocorrelation time z could, however, be much larger than this 
lower bound, if there exist modes which relax significantly more slowly 
than the level Ixl. Whether or not this occurs depends on the detailed 
structure of the graph G, and not only on the {cN}. One way of seeing this 
is to note that a walker at a site x r 0 feels a net drift "inward" (i.e., toward 
the root) if f ie(x)< p(x), and a net drift "outward" (i.e., away from the 
root) if fie(x) > p(x). We distinguish three cases: 

1. If fie(x) < p(x)  for all x v~ O, then the drift is "uniformly inward," 
and a relatively straightforward Liapunov-function argument can be 
employed to prove geometric ergodicity (see Section 5). In particular, this 
occurs if/3 < M j- *. 

2. If fi >/~-*, then the drift is "on the average outward," and a finite 
invariant measure ~ does not exist. (The Markov chain is thus either null- 
recurrent or transient; it might be amusing to determine which.) 

3. If M~-I ~< fi < #-1, then the situation is much more delicate. "On 
the average" the drift is inward--that is why there exists an exponentially 
decaying invariant measure n--but  at certain sites x # 0 the local drift may 
be outward. In particular, the graph G may contain large connected 
regions in which the drift is outward, and this can spoil the geometric 
ergodicity (Example 4.1). On the other hand, if G is a sub-Cayley tree, we 
shall show that such pathologies cannot occur: 
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T h e o r e m  3.1. Let G be a sub-Cayley rooted tree satisfying 
(3.1)-(3.2), and let t i < #  1. Define 

~= sup [1 ti K * - I  ] -1 
1 < ~ : . < ~ )  ' M Z ( - ~ - - -  1 (3.10) 

(clearly ? >  1). Then the hitting time to the root, Zo, satisfies 

Ex[U~ < oo (3.11) 

for all x, and the spectrum of P ~ 1 • is contained in the interval 

[1 - 2Mo/M, ?-1]  (3.12) 

where Mo - SUpx[p(x) + tic(x)]. 

Theorem 3.1 (together with its consequence, Corollary 3.1) is the main 
result of this paper; we now give a brief outline of its proof. 

The main thrust of our proof is to show that the hitting times to the 
root have an exponentially decaying density, in the sense that Ex[r  TM] < oo 
for some r > 1. (We obtain quantitative bounds on r in terms of ti, M, and 
the function Z.) First we use the fact that G is a sub-Cayley tree to bound 
hitting times from x to the root in terms of hitting times from a child of the 
root to the root (Lemmas3.1-3.3). Next we use a beautiful identity 
(Lemma 3.4) to relate hitting times from x to the root, averaged over the 
invariant measure 7z, to return times from the root to itself. Finally, we use 
the explicit transition matrix (3.5) to relate return times from the root to 
itself to hitting times from a child of the root to the root (Lemma 3.5). 
Putting this all together, we obtain an algebraic inequality for the hitting 
time from a child of the root to the root in terms of itself (Lemma 3.6). For  
r -  1 sufficiently small, the solution set of this algebraic inequality consists 
of two disconnected intervals [1, K1] and [/(2, + o o ]  (Lemma 3.7). Our 
goal is to show that the true value lies in the lower of these two intervals. 
To do this, we argue as follows: If G is a finite sub-Cayley tree, then 
Ex[r  TM] is a continuous extended-real-valued function of r (Lemma 3.8); and 
for r = 1 it obviously equals 1. Therefore, by continuity, E x [ f  ~ must lie in 
the lower of the two intervals whenever r is small enough so that the two 
intervals are disconnected (Lemma 3.9). If G is an infinite sub-Cayley tree, 
then the foregoing argument can be applied to finite "cutoff" t r ees  G (N), 
yielding bounds on Ex[r ~~ which are uniform in N; and these uniform 
bounds can then be carried over to the original tree G (Lemma 3.10). This 
proves that hitting times to the root decay exponentially; we then use an 
argument based on Dirichlet boundary conditions to relate this to the L 2 
spectrum (Lemmas 3.11 and 3.12). 

822/54/3-4-16 
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Let us emphasize the logical structure of this proof. For the first half of 
the proof (through Lemma 3.7), we obtain bounds relating the expectations 
E~[r TM] for different x, but for all we know these expectations might be 
+ oo ! Only through the continuity argument for cutoff trees (Lemmas 3.8 
and 3.9) do we obtain bounds which are guaranteed to be finite. Moreover, 
these finite bounds are uniform, so the cutoff can be removed. ~ Arguments 
of this type have been used in other areas of mathematical statistical 
mechanics and quantum field theory by Brydges eta/. (34) and by Slade. (35) 

We now proceed with the proof of Theorem 3.1. Some of the lemmas 
below are stated in greater generality than we shall really need; the aim is 
to show their "natural" context. We need a few definitions: If G = (V, E) is 
a graph, we say that a Markov chain with state space V is a Markov chain 
on G if its transition matrix P =  {Po}~.J~ v satisfies pu=  0 whenever i C j  
with {i, j} C E. (By abuse of language, we shall often fail to distinguish 
between G and V.) For any Markov chain and any subset A of the state 
space, we define the hitting time rA -= min{t ~> 1: X, e A }; note that T~ ~> 1 
always, even if Xo ~ A. Finally, we assume that the sub-Cayley rooted tree 
G is nontrivial, i.e., contains at least one vertex other than the root. 

Lemma 3.1. Let P={Pi:}i.:~r be the transition matrix for a 
discrete-time Markov chain on a countable tree T. Let S be a connected 
subset of T (i.e., a subtree), and define the restricted transition matrix 
pS= {pSij}i, j s S  by 

s [P~ if i ~ j  (3.13) 
Pi:=~Pi~+~kcsP~ if i = j  

Then, for each x eS,  there exists a coupled (non-Markovian) stochastic 
process X, = (X, s, X~) on S x T such that: 

. 

2. 

3. 

4. 

5. 
rain { t >7 

J ( s  = ~T__~ X. 

{X s} is Markovian with transition matrix ps. 
{X r} is Markovian with transition matrix P. 

X s = x  r, for t<r~s~r)-min{u: r 

For any set A c S, z~s)_~ min{t /> l : X S e A }  ~< r~ T ) -  
1: X~reA}. 

t~ Otherwise put: We state Lemmas 3.1-3.7 for general sub-Cayley trees, but we only use them 
forfinite sub-Cayley trees. For finite state space it can be proven by general arguments  that 
E~[r ~~ < ~ for some r~- 1, but this is insufficient for our  purposes, since we need bounds 
which are uniform in N. To this end we employ Lemmas 3,1-3.7 together with the continuity 
argument  of Lemmas 3.8-3.10. 
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ProoL For each history {Xf} of the Markov process P (with initial 
condition x), define {X s} to be the subsequence of {Xf} consisting of 
those entries which are in S. It is not hard to see that {X s} is Markovian 
with transition probability ps.  (The key fact is that since T is a tree and S 
is connected, whenever the process {X f} leaves S it must reenter S at the 
same point from which it left.) Facts 4 and 5 are then obvious. II 

Coro l l a ry .  The condition 

E~pS)[r TM ] <~ E(P)[r TM ] 

holds for all x e S, A = S, and r ~> 1. 

k e m m a  3.2. Consider a discrete-time Markov chain whose state 
space is a countable tree T. Let x # y  be points in T, and let 
x=-xo,  x~,..., x ,  = - y be the unique self-avoiding path in T from x to y. 
Then, for any r > 0, 

n - - 1  

Ex[rV]  = 1-[ Ex,[ r~x'§ (3.14) 
i = 0  

Proof. This is an immediate consequence of the strong Markov 
property. | 

For the random walk (3.5) on a sub-Cayley rooted Lemma 3.3. 
tree, 

and 

Ex[r vparent(x)] < max Ey[r ~~ =- K(r) (3.15) 
l y l  = 1 

E~[r TM] ~< K(r) IxJ (3.16) 

for any r/> 1 and any x # 0. 

ProoL The first inequality is an immediate consequence of the sub- 
Cayley hypothesis and the "translation invariance" of (3.5), together with 
Lemma 3.1. The second inequality is an immediate consequence of the first, 
together with Lemma 3.2. | 

k e m m a  3.4. For the random walk (3.5), 

E0[r TM] ~<r+( r - -1 )  ~ fljXlEx[-r~0 ] 
x # 0  

for any r ~> 1; equality holds if the right-hand side is finite. 

(3.17) 



812 Sokal and Thomas 

ProoL For any x we have 

Ex[r *~ = r ~, P(x, y) Ey[r ~~ + rP(x, O) 
y ~ O  

(3.18) 

(just let the Markov chain take one step starting at x and keep track of 
where it lands). In particular, if the right-hand side of (3.17) is finite, then 
Ex[r ~~ is finite for all x. Summing (3.18) against the invariant measure/?l~t 
and interchanging the order of summation (everything is nonnegative), we 
obtain 

y" ~IXlE~[r'~ = r y" ~ /~txtP(x, y) Ey[r TM] + r ~ Bt~tP(x, O) 
x x y-/-O x 

= r y" ~lYlEy[r~~ + r (3.19) 

where on the second line we twice used Zx ~l~lP( x, Y)=/~lYt. Since by 
hypothesis ~ y r 1 7 6  w e  can rearrange (3.19) to deduce 
equality in (3.17). On the other hand, if the right-hand side of (3.17) is 
infinite, the inequality is obvious. I 

Remarks. 1. With a little more work, it can be shown that equality 
holds in (3.17) even if the right-hand side is infinite. 

2. Relation (3.17) is a special case of a more general formula holding 
for irreducible positive-recurrent Markov chains: 

r~(x) Ex[f(zA)]=zc(A)f(1)+ ~ rc(x) Ex[(Af)(va) ] (3.20) 
x ~ A  x C A  

where A is an arbitrary nonempty set, f is an arbitrary real-valued function 
on { 1, 2, 3,...} satisfying mild regularity conditions (e.g., f monotonic or 
bounded will do), and (A f ) (n)=f (n+ 1 ) - f ( n ) .  See Cogburn (ref. 36, 
Lemma 3.4) for a proof. Some important special cases of (3.20) are 

~. ~(x) Ex[~A] = 1 (3.21) 
x E A  

~(x)Ex[~ 2] = 1 + 2  ~" ~(x)Ex[~A] (3.22) 
x e A  x C A  

z~(x) Ex[r~A]=rr~(A)+(r-1) ~ r~(x) E x [ f  ~] (3.23) 
x ~ A  x C A  

In particular, (3.21) is familiar from renewal theory. See, e.g., Nummelin 
(ref. 20, Chapter 5) for applications. 



Exponential Convergence to Equilibrium 813 

L e m m a  3.5. For the random walk (3.5), 

E~ flc(O)r +-~ ~ Ey[r~"] (3.24a) 
l y l  = 1 

>~ r + ~ r  [K(r) - 1 ] (3.24b) 

for any r i> 1. 

ProoL The equality is just the special case x = 0  of (3.18). The 
inequality holds because Ey[r ~~ = K(r) for at least one child y of the root, 
and Ey[r'O]>>,r>~l for all the others. | 

Lemma 3.6. 
tree, 

For  the random walk (3.5) on a sub-Cayley rooted 

M 
K(r)<~ 1 +-z-- (r -  1)[ Z(flK(r))- 1] (3.25) 

or 

for any r ~> 1. 

Proof. This is an immediate consequence of Lemmas 3.3-3.5. 

L e m m a  3.7. Consider the random walk (3.5) on a sub-Cayley 
rooted tree. Let K* be any number in the interval 1 < K * <  (/~#)-1, and 
define 

r , = I 1  /~ K * - I  I 1 
M Z(-fi-K;i--1 (3.26) 

(clearly r* > 1). Then, for any e > 0, there exists 6 > 0 such that 1 ~< r ~< 
r* - e  implies K(r)r (K* -6,  K*].  

Proof. If K(r) <~ K*, then Z(•K(r)) ~ Z(~K*) < oe. It then follows 
immediately from (3.25) that K(r)<~K*-6, where 6=_(eM/pr .2) 
[Z(BK*)-I]. ! 

i . e m m a  3.8. For any irreducible Markov chain on a finite state 
space S, any initial distribution ~, and any nonempty set A c S, the quan- 
tity E~[r TM] is a continuous function of r (r >/0) with values in [0, + oe ]. 

Proof. An irreducible finite Markov chain is recurrent, so wA < 0o 
with probability 1. Thus 

f(r)=--E~[fA]= ~ a,r" 
n = l  
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with a ,  = P~[zA = n] >i 0. Now define R = lim inf, ~ ~ a n 1/,. Clearly, f ( r )  is 
an increasing function of r ~> 0 which is finite for 0 ~< r < R and equal to 
+ 0o for r > R. Moreover, f is an analytic (hence continuous) function in 
the disk Ir] < R ,  which has (by the Vivanti-Pringsheim theorem) a 
singularity at r = R .  12 So all that remains to be proven is that 
l imrTRf ( r )=  +0o. Now 

P ~ [ 7 ;  A = n] = P~[zA > n -- 1 ] - P~[T A > n] 

= (~,  (PiAc), 1 1 } -- (~,  (PIAc) n 1 } (3.27) 

where I,~c is the operator of multiplication by the characteristic function 
ZAc. Now multiply both sides of (3.27) by r" and sum from n = 1 to infinity: 
both sides certainly converge for [rl < 1, and we obtain there 

f ( r )  = (~,  [ ( r -  1 ) ( I - r P I A c )  -1 + I ]  1} (3.28) 

By well-known matrix theory, the right-hand side of (3.28) is a rational 
function of r; and by analytic continuation, it must equal f ( r )  throughout 
the region of analyticity Irl < R. It follows that f h a s  a pole at r = R, so that 

l i m r T R f ( r ) =  + ~ .  | 

I . e m m a  3.9. Consider the random walk (3.5) on a f ini te sub- 
Cayley rooted tree. Choose any number K * >  1, and define r* by (3.26). 
Then, for all r in the interval 1 ~< r ~< r*, we have K(r)  <<. K*. 

Proof. By Lemma3.8,  K ( r ) = m a x l y l = l E y [ r  TM] is a continuous 
function of r; and clearly K ( I ) =  1 < K * .  By Lemma 3.7, there is a forbid- 
den interval [K* - 6 ,  K*]  in which K(r)  cannot lie for 1 ~< r < r*. It follows 
that K(r) must lie below this forbidden interval for all such r. By continuity, 
the bound K(r)<~ K* holds also for r = r*. | 

I . e m m a  3.10.  Consider the random walk (3.5) on a sub-Cayley 
rooted tree (finite or infinite). Let K* be any number in the interval 
1 < K * < ( / ? # )  -1, and define r* by (3.26). Then, for all r in the interval 
1 ~ r ~ r*, we have K(r)  <<. K*. 

ProoL For each N~> 1, let G (m be the rooted subgraph of G con- 
sisting of all the vertices of level ~< N together with the edges connecting 
them. It  is easily seen that G (N) is a finite sub-Cayley rooted tree. 
Moreover, Z~u)~< Z6 and hence r*(N)>~ r*. Now let r be in the interval 
1 <~ r ~< r*. By Lemma 3.9, we have 

E~6INb[r ~~ ~< K* 

~2 This statement is true also in the case R = ~, by Liouville's theorem (since f is a non- 
constant entire function). But this observation is unnecessary, since if R = ~, the proof of 
the lemma is already complete. 
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for each vertex y with ]Y[ = 1, for all N. Now, since G(1)cG(2)c  -.. c G ,  
/we can employ the argument in Lemma 3.1 to construct a coupled (non- 
Markovian) stochastic process with state space G (a) • G (2) • . . .  x G whose 
marginals are the random walks (3.5) on G (N) and G, and in which Ca('))~< 
r ga% ~< .. .  ~< Z(o ~ It then follows by the monotone convergence theorem 
that 

E(ye)[r TM] = lira E(G(N))[r ~~ <~ K* for all r ~< r* I 
N ~  

We can now optimize over K* ~ (1, (fl/ ,)-l).  Define ? by (3.10); it then 
follows from Lemmas 3.10 and 3.3 and Eq. (3.24a) that Ez[-~ ~~ < 0o for all 
x. This completes the proof of the first half of Theorem 3.1. 

The remainder of the proof is a straightforward argument based on 
Dirichlet boundary conditions: 

L e m m a  3.11.  Let PD be the (sub-Markovian) matrix obtained 
from P by deleting the row and column corresponding to 0 [P  with 
Dirichlet conditions imposed at 0]. Then PD is a self-adjoint operator on 
/2(g, V\{0}) with norm ~<f-1. 

Proof. The self-adjointness of Pz) is obvious. Note next that 

(PT) 1)(x) = Px [to > n] ~< ~- (" + 1)Ex[U~ (3.29) 

Theft, for any r supported on a finite set of points, 

~< 11~,112+ F= 7z(x)(P~l)(x) 
x ~ supp ~b 

~ (n + l)114'11~ F ,  n ( x ) E x I - U  ~  ( 3 . 3 0 )  
x e supp ~b 

where lj~ll~-SUpxl~b(x)l. Since such functions ~b are dense in 
12(~r, V\{0}),  it follows from Proposition 2.5 that IIPDII ~<f-1. | 

La m ina  3.12. The supremum of the spectrum o f P  r l  ~ is ~<IIPDII. 

ProoL Let ~b E 1 • and set c = r Then 

(r Pr = ( ( r  el) ,  P(r  ~ 

= ((~b - e l ) ,  Po(~b - c 1))&~, v\(0})- [cJ 2 

~< [IP~I[ I[@-cl[[~=(~)-[el 2 

= IlP~lt (It , l l  2+=<~) + Icl 2) - [c[ 2 

~< IIeoll 2 II~llz=(~) (3.31) 

This proves the claim. | 
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Remark. Lemma 3.12 can alternatively be proven using the min-max 
theorem (37) or as a corollary of a more general theorem on Dirichlet boun- 
dary conditions/7) 

Completion of the Proof of Theorem 3.1. All that remains to be 
proven is that the infimum of the spectrum of P is >~ 1 - 2Mo/M. To see 
this, note that, by (3.5), 

1 
P= I +-~  Q (3.32) 

where Q is self-adjoint and negative-semidefinite. Since IIPII = 1 when 
M>~Mo, we must have s p e c ( Q ) c [ - 2 M o ,  0]. Hence, sp ec (P )c  
[ I - 2 M o / M ,  1]. I 

Theorem 3.1 gives a quantitative bound on the spectral gap, and hence 
on the modified autocorrelation time Z'exp. This bound takes a simple form 
if we assume that CN, the number of vertices in the tree at level N, has the 
asymptotic behavior CN~#NN ~-1 for some "critical exponent" 7, as is 
believed to occur for self-avoiding walks. Note that the submultiplicativity 
property CZa+N<~CMCN, valid for every sub-Cayley rooted graph, 
implies (38) that CN >~/~N; SO 7, if it exists, must be t> 1. 

C o r o l l a r y  3.1. Under the hypotheses of Theorem 3.1, we have 

M Z(flK*) - 1 
"G 'ex p ~-~- inf K* (3.33) 

1 < g *  < (~/2)  - 1  - -  1 

If, in addition, CN <<. A#NN r- 1 for N sufficiently large, then there exists a 
constant C1 (independent of fl) such that 

Z'_xp ~< C1(1  - t i p )  - ~  1 (3.34) 

Finally, if the CN further satisfy 

1 
l i m i n f - -  [ N C N - ( N -  1)#c N l] = F > O  

N ~ o o  C N 
(3.35) 

then there exists a constant C2 (independent of fi) such that 

r~xp --~ C 2 ( N )  1 + ~ (3.36) 

for fl T # -  1, where 

(N)=-Z( f i )  - '  ~ Nfl~vcN = 
d 

N=0 ~ log Z(fl) (3.37) 
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Remark. If r LtNN~'- 1, then (3.35) holds with F =  ~. 

ProoL Inequality (3.33) is basically the translation of Theorem 3.1 
into the language of autocorrelation times: it follows from 
exp(_l/Z,cxp)~< ? i and the elementary inequality l o g ( 1 - x ) ~ < - x  for 
0~<x~<l. 

Next assume that CN <~ AI2NN ~- 1 for N sufficiently large. Then 

Z(fK*) = ~ (fK*) N c,, 
N = O  

<~ A ~, (fl#K*)N N ~- l + polynomial in fl 
N = O  

<~A' ~ (f#K*)N(--1)N(--N~)+polynomialin f 
N=O 

= A'(1 - fl#K*)-7 + polynomial in fl 

A"(1 - f#K*)-~ (3.38) 

uniformly for 0 ~< fl#K*< 1. Using this inequality to estimate the right- 
hand side of (3.33) and computing the resulting infimum, we obtain (3.34). 

Finally, by hypothesis (3.35), for any e > 0 we have 

(1 - fil2)(N} = 
~,~ N -  ( N -  1) #CN-I] BIN 

Z ~ V = 0  C N f  N 

1> (F--  e) + polynomial in fl (3.39) 
~"~ co C R N 
Z-~N = 0 N/J  

'~oz ~ o N > ( l _ _ f l i Z )  1; But CN/>#N by the sub-Cayley hypothesis, so ~--N=O CNp .- 
hence 

lim inf(1 - f l#)(N} >>. F (3.40) 
~T~ -~ 

from which (3.36) follows. | 

The result of Theorem 3.1 can be extended to a slightly larger class of 
Markov chains by a well-known comparison principle: Let PI and P2 be 
transition probability matrices on the same state space which are reversible 
with respect to the same measure ~z. Assume that the off-diagonal matrix 
elements of P2 dominate those of P1, i.e., (P1)xy <~ (P2)xy for all x r y. Then 
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1 
(f, (I-P~)f),2~.)=~ ~, ~x(P1)xy [ f ( x ) - f ( Y ) ]  2 (3.41) 

X, y 

1 
~5 2 gx(P2)xy [f(x)-- f(Y)] 2 

x ,  y 

= (f, ( I -  P2) f ) , 2 ~  (3.42) 

for any f~12(n), so that P1 >~P2 in the sense of quadratic forms. The 
Rayleigh-Ritz principle (or the min-max theorem) then implies that 
sup spec(P1 r 1• >/sup spec(P2 ~ 1• hence, that r'cxp.1 >/r'cxp.2. 

In particular, consider two rooted graphs G~ =(V, El,  0) and G2= 
(V, E2,0) with the same vertex set V and with E I = E 2 .  Assume, in 
addition, that ]xaG~ = IxlG2 for each x e  V, i.e., the distance from x to 0 is 
the same for both graphs. [Equivalently, G 2 is obtained from G1 by adding 
edges (E2\E1) which connect vertices on the same or neighboring levels.] In 
this case we call G2 a compatible supergraph of G1, and G1 a compatible 
subgraph of G2. Both graphs have the same {CN} and hence the same #. 
Now fix 0 < fl < #-1 and M>>. SUpx[p2(x) + flc2(x)], where p2(x) and e2(x) 
are the number of parents and children of x, respectively, in G 2. Let P1 and 
P2 be the corresponding standard transition probabilities defined by (3.5). 

t ~ t Then, clearly, (P~)xy <<. (P2)xy for all x ~ y, and hence "Cexp(G2)...-. Zexp(G1). 
Otherwise put, let G--(V, E, 0) be a countable rooted graph satisfying 

(3.1)-(3.2), and fix 0 < f l < F t  1 and M>~sup~[p(x)+flc(x)]. Then 
t ~ '  t %xp(G) --~ mf %xp(H) (3.43) 

H 

where the infimum is taken over all compatible subgraphs H c G .  In 
particular, we have: 

Corollary 3.2. The results of Theorem3.t  and Corollary3.1 
remain valid for any countable rooted graph which contains a sub-Cayley 
rooted tree as a compatible subgraph. 

Proof. It suffices to note that the bound (3.10)/(3.33) depends only 
on the {ON}, which are the same for both graphs. | 

Unfortunately, we do not know any convenient algorithm for testing 
whether a given rooted graph G satisfies the hypotheses of Corollary 3.2. 

Remarks. 1. A similar result for finite graphs with counting 
measure is proven in ref. 37. 

2. Analogous considerations apply to pairs of continuous-time rever- 
sible Markovian jump processes with transition rates satisfying Jl(x, y)<~ 
J2(x, y) for all x ~ y. 
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4. LOWER BOUNDS ON THE AUTOCORRELATION TIME, 
BY RAYLEIGH-RITZ 

We now turn to the variational lower bound on the autocorrelation 
time r'exp. Consider an arbitrary countable, connected, rooted graph G 
satisfying (3.1) (3.2). Let e N be the total number of edges which connect 
vertices of level N -  1 to those of level N. Thus, 

eN= E p ( x ) =  ~ c(x) (4.1) 
I x l  = N I x l  = N - -  1 

In particular, eo=0  and CN<.eN<<.MpCN for N~> 1 (so eN=CN for N~> 1 if 
G is a tree). 

Now define the aggregated Markov chain (33'9) to have state space 
Z + = {0, 1, 2,... } and transition probabilities 

P(N, N -  1)= eN (4.2a) 
M c  u 

fleN + 1 
,~(N, N +  1 ) -  - -  (4.2b) 

mcN 

eN fleN+ 1 P(N, N ) =  1 (4.2c) 
M c  N M C N  

This is an irreducible reversible Markov chain with invariant measure 

if(N) = const x flNc N (4.3) 

ff is a finite measure iff Z(fl) < 00. Now v'exp of the original Markov chain is 
bounded below by r'ex p of the aggregated chain, since for any trial function 
f e  12(Z+, r~) we can define a trial function f e 12( V, re) by f ( x )=  f(Ixl ), and 

(f, l)p(<=)= (f, 1)&z+,~ ) 

( f  f ) : (v:)= (Z f),2(z+,~) 

(f, Pf),2(v,=, = (Z f):(z+,~) 

= (f, Pf):(z+,.)  

(4.4a) 

(4.4b) 

1 
eNflN[f(N)--f(N-- 1)]  2 

MZ(fl) N =  1 

(4.4c) 

Taking the supremum in (4.4c) over all f which are normalized and 
orthogonal to 1, we find that 

supspec   
\rexp/ y . ,  (f, f )  ~;xp(aggregated) 

(4.5) 

which implies the above assertion. 
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On the other  hand, 

sup spec(P [" 1 ~)/> sup essential spec(P) >~ sup essential spec(P) (4.6) 

and in some cases the supremum of the essential spectrum for the 
aggregated chain can be determined exactly. For  example: 

P r o p o s i t i o n  4.1. Let /~>0. Suppose that CN,  C N > O  for all N>~I 
and that 

lim CN+i--/Z (4.7) 
N ~ c ~  C N 

Then 

lim e N - -  = a (4.8) 
N ~ o o  C N 

a 
sup essential spec(P) = 1 - ~ [ 1 - (fi#)~/2 ] 2 (4.9) 

Remarks. 1. If G is a tree, t h e n a = l .  

2. This proposi t ion also covers the case fi/>/Z ~, for what it is worth. 

C o r o l l a r y  4.1.  Under  the same hypotheses, for fll"/z -~ we have 

--1 4M 

~> log = Z;xp {1 -- (a/M)[1 - (j~/Z)I/2-] 2 } a 
(1 - / 3 / Z ) - 2  + O((1 - / Y / z ) - l )  

If, in addition, the c N satisfy 

then 

(4.10) 

~'tex p ~ C ( N )  2 ( 4 . 1 2 )  

for some C > 0 which is independent  o f / / a s  fl "~ # -  1. 

Proof of Corollary 4.1 Assumin 9 Proposition 4.1, The first 
inequality follows immediately from Proposi t ion4.1  together with (4.6). 
Now assume (4.11). Then, for any e > 0 ,  

(1 - fl/Z)(N) = ~~ (X--  1)/ZcN_ 1] /~N 
~ o ~ =  0 C N ~  N 

polynomial  in/~ 
~ < ( F + e ) +  x,o~ c t~N (4.13) 

Z...~ N = 0 N P '  

1 
lim sup - -  [ N c  N - -  ( N -  1)/zc N 1 ]  = F <  oo (4.11) 

N ~ c o  CN 
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The second term is bounded as fl T # - 1  so 

lim sup(1 - f l # ) ( N )  < ~ (4.14) 

from which (4.12) follows. II 

Proof of Proposition 4.1. Let U:12(Z + , ~)-~12(Z + , counting 
measure) be the unitary mapping defined by 

(Uf)(N) = (flN CN)I/2 f ( N )  (4.15) 

We then compute the matrix elements of UPU -1" 

fll/2e N 
( UPU-  1)(N, N -  1 ) = a/t,~l/2,.1/2 (4.16a) 

. . . .  N ~N 1 

fll/2e u + l (4.16b) (UPU-1)(N, N+ 1) -- ~t,~/2~m 
~ ' ~ N  ~ N +  1 

eN f leN+ 1 (UPU-1)(N, N ) =  1 (4.16c) 
M c  N M e  N 

It follows that 

f a } U P U  - 1 =  ( f l ~ ) l / 2 A - [ -  1 - ~ [ 1 - ( f l / A ) 1 / 2 ]  2 I 

a 
+ ~  [1 - ( t i p ) i / 2 - ]  50 ..[_ Q (4.17) 

where A is the discrete Laplace operator on Z+ ,  

1, N>~ 1 (4.18a) 
A ( N , N - 1 ) =  O, N = 0  

A(N, N+ 1)= 1 (4.18b) 

- 2 ,  N>~ 1 (4.18c) 
A(N,N)= _1, N=O 

I is the identity matrix, 5o = diag(1, 0, 0,...), and 

Q ( N , N - 1 ) = [  ~meN 
I hA-p 1/2,, 1/2 
I . - ~ W N  ~ N  1 

fll/2CN+ 1 
Q(N, N+ 1) = ~ t , 1 / 2 . A / 2  

* '*~N ~ N +  1 

a(1 + flU) Q(N, N)= 
M 

a ] ~ (/~u)~/~ (1-6No) (4.19a) 

e N  ~ C N +  1 CI 
5uo (4.19C) 

MCN MCN M 

a 
M (fl/~) m (4.19b) 
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The Laplacian is easily diagonalized by the functions cos k (n+  1/2), 
k s [0, re]; its spectrum is the interval [ - 4 ,  0]. The multiplication operator 
50 is rank one, hence compact. The operator Q is a sum of three terms, 
each of which is a bounded operator (the identity, left shift, or right shift) 
times a function which vanishes at infinity; so Q is compact. It follows that 
the essential spectrum of UPU-1, and hence of P, is the interval 

I_~M4a a 1 _ a  [_1 _ (fl/~)1/2]] i (fl#)1/2 + 1 - -~r  [1 -- (fl#),/a], M 

We now give two examples which show that ~;xp(aggregated) can in 
some cases be a very poor lower bound for "r;x p. 

Example  4.1 (Lawler and Sokal(7)). Let Co-1,  Cl, c2 .... be an 
arbitrary sequence of positive integers satisfying l i m N ~  CN = +GO and 
supNt>0(CN+ 1/CN) < O% and let Mc be any integer /> SUpN>/0(CN+ JCN). 
Then there exists a countable rooted tree T =  (V, E, 0) such that: 

(a) #({x:  Ixl =N})=CN 
(b) sup~ c(x) <~Mc 

s u p s p e c ( P ~ l = ) > > y l - ( l - f l M c ) / M  if O<~fl<M~ -1 (c) ll  if Mjl<~f l<#  -1 

Proof. We construct a "maximally unbalanced" tree having the given 
{ cu }: the root has cl children, which are labeled "eldest," "second-eldest," 
etc.; these children procreate, beginning with the eldest, each one having 
the maximum allowable number of children (M~) until c2 children have 
been generated; and so on. [-In other words, of the CN vertices at level N, 
the [CN+ t/M~J eldest of these have M,  children each, the one next-eldest 
has CN+I--M~[cN+I/M~A children, and the rest have no children. 
Moreover, if Ixl = ly[ and x is "elder" to y, then all the children of x are 
elder to all the children of y.] Now let x* be the eldest vertex of level N; 
then the tree of descendants of x* contains a complete Mcary  rooted tree 
of KN + 1 generations, where KN is the largest integer such that c N + ~ >1 M~ 
for all 0 <~ k <. KN. Therefore, the partial generating function 

satisfies 

Zxk(fl)= ~ fllyI-N (4.20) 
ye vx, N 

KN 
ZxTv(fl)>~ ~ (Mcfl) k (4.21) 

k = 0  
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Moreover, 

Ku>/(infk>~olOgCN+k)/logMc~ + ~  as N ~  

Now consider the trial function 

fN = )~ vx;~ - const 

where the constant is chosen to make f orthogonal 
straightforward calculation shows that 

(f, ( I -  P) f )  1 Z(fl) 
( f  f )  MZ~Tv(fl) Z(fl) - flUz~?v(fl) 

to 1. Then a 

N~oo' <~ M (Mcfl) 
k = O  

(4.22) 

fo 
f (x)  = ~ 1__ (q__ 1) - I  

Then f is orthogonal to 1, and 

Claim (c) follows. | 

Thus, for fl ~> M~- 1 it is impossible to prove the existence of an L 2 spec- 
C oo tral gap (much less lower bounds on it) given only the { N}N=0 and Me; it 

is necessary to have more detailed information about the structure of the 
graph G. 

Example 4.2. Let G N be the complete q-ary rooted tree of N +  1 
generations (i.e., levels 0 through N). Let P be its standard transition 
matrix with parameters (fl, M). Fix a vertex x~ of level 1, and define the 
trial function f by 

if x = 0  
if x is a descendant ofx~ (4.23) 
otherwise 

where 

Therefore, 

z ( / ~ ) -  1 1 
( f ,  f )  = - -  ( 4 .24 )  

Z(fl) q -  1 

fl q_ 
(f' ( I - P ) f ) = M Z ( f l ) q  1 (4.25) 

sup spec(P ~ 1 • >~ _ 1 ( .  f l q - 1  ) (f' Pf )= 1 (4.27) 
(f, f )  M \(fiq)N __ 1 

( f l q ) N  + I - -  1 

Z(fl) = (4.26) 
f l q -  1 
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In particular, if flq > 1, then the spectral gap is exponentially small when N 
is large. 

On the other hand, the aggregated chain for G N has the associated 
quadratic form 

( F , ( I - P )  F) fl u , = - -  (flq)" I F ( n +  1 ) - F ( n ) ]  2 (4.28) 
MZ(/~) .=0 

which for flq > 1 is a random walk on {0, 1 ..... N} with constant outward 
drift. But on a finite interval, outward and inward drift are equivalent by 
symmetry; for N large, the spectral gap is approximately equal to (filM) 
[ 1 -  (flq)-1/212, by a calculation similar to that performed in the proof of 
Proposition4.1. In particular, the spectral gap does not go to zero as 
N ~ o o .  

The physics underlying this example is the following: If flq > 1, there is 
an outward drift, and the equilibrium measure zc is strongly concentrated 
on the leaves {x: Ixl = N}. But it is difficult for the random walker to move 
from one leaf to another, because to do so it must pass through the highly 
improbable states with [xl small (fighting against the drift). On the other 
hand, this slow equilibration is not reflected in the aggregated chain, which 
measures only the equilibration between sets of fixed ]x]. 

Example 4.3. Let G = (V, E, 0) be an arbitrary rooted graph, and 
let P be its standard transition matrix with parameters (fl, M). Let GN = 
(VN, EN, 0') be the graph defined in Example 4.2. Now form the new graph 
G=(VWVN, EkAENt, A{(O,O')},O) by hooking on the root of GN as a 
child of the root of G. Let P be the corresponding transition matrix with 
parameters (fl, M); this is well defined (i.e., has nonnegative matrix 
elements) provided that M>~max[Mo(G) +fl,  1 +flq] .  Now P and P 
clearly have the same essential spectrum. But the trial function constructed 
in Example 4.2 (extended to all of ~ by setting f =  0 on G) shows that the 
spectral gap of P can be made arbitrarily small, if flq > 1, by taking N 
large. This class of examples shows that the spectral gap can in general be 
much smaller than the essential spectral gap. 

5. UPPER B O U N D S  ON THE A U T O C O R R E L A T I O N  T IME,  
BY L I A P U N O V  F U N C T I O N S  

Finally, we provide an upper bound on the modified autocorrelation 
time and a proof of geometric ergodicity, in the case that the drift is 
uniformly inward. Again the setting is that of standard random walk with 
parameters (fl, M) on a rooted graph G =  (V, E, 0) satisfying (3.1)-(3.2). 
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Proposit ion 5.1. Assume there exists an e > 0  such that 
p(x)-/Yc(x) >~ e for all x ~ 0. Then sup spec(P r l • < 1, and in fact 

sup spec(P ~ 1")~< 1 - ~ r +  ~ l+/YMc j 1 

- 1 t- O(/~ 3) 
4/YMMc 

(5.1) 

If, in addition, M > M o -  supx[p(x) +/yc(x)] ,  then 

inf spec P ~> 1 - 2M0 > _ 1 (5.2) 
M 

so the process is geometrically ergodic. 

Remarks. 1. Clearly, p(x) and c(x) can take only finitely many 
values [cf. (3 .1)(3.2)] ,  so the first condition of the proposition is 
equivalent to the superficially weaker condition p(x) >/Yc(x) for all x. 

2. Summing the hypothesis p(x)-/Yc(x))e with weight /Yixl over 
x r 0, we obtain 

/Y~X~[p(x)-/Yc(x)] ~> ~ [ z ( / y ) -  1] (5.3) 

Now the sum telescopes: 

/YlXl[p(x)-/Yc(x)]= lim ~ /Ylxi[p(x)-/Yc(x)] 
x ~ O  N ~  xv~O 

Ix] ~< N 

= l i m  I/Yc(0) -/yN+ 1 Z C(X) 1 
N ~  I x l = N  

~</Yc(O) (5.4) 

Therefore, Z(/Y) ~< 1 + (/Y/e) c(0) < oo, so the Markov chain is positive- 
recurrent. 

Proof of Proposition 5. 1. Let 

~ ( x )  = ~lx4 (5.5) 

822/54/3-4-17 
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with ~ ~> 1. Then, for x ~ 0, 

(eo~)(x)  = - ~  [p (x ) (~ - '  - 1) + pc(x)(~ - 1 ) + M ]  O,(x) 

1 <--~[M+~c(x)(c~+c~ 1 - 2 ) - e ( 1 - a  l ) ]0~(x  ) 

1 <~---~ [M+~M<(c~+c~ -~ --2)--e(1 --~ t)] qs~(x) 

1 
~- ~ ( x )  (5.6) ~(~) 

where ?(c~)> 1 provided that ~ is sufficiently close to 1. It follows that if 
{X(n)} is the Markov process associated with the transition matrix P, then 
{rn~(X(n))} is a supermartingale whenever 1 ~< r ~<?(~); it will serve as a 
kind of Liapunov function in the remainder of the proof. 

Consider the process starting at X(0)= Xo. Let r be the first time that 
the process hits the root, and let ~u be the first time that it hits the root or 
{x: lxl >~ N}. Then, by the optional stopping theorem for supermartingales, 

~lx01 = ip~(x0 ) ~> Exo(r~,tp~(X(ZN))) 

= Exo(r~Uz(X('CN) = 0)) -b ~NExo(r~"z (IX(vN)I -- N)) 

>~Exo(r ~N) 

N ~  Exo (r~) (5.7) 

whenever ~>~ 1 and 1 ~<r~<~(7); the last step used the monotone con- 
vergence theorem. This implies that if Po is the matrix defined in 
Lemma 3.11, then by the same argument used there, 

= + - - - g -  1 1 1 
M - < 

(5.8) 

The bound (5.1) follows immediately by Lemma 3.12. 
The reverse bound (5.2) was already proven in the paragraph 

surrounding (3.32). I 

Translating (5.1) into the language of autocorrelation times, we obtain 

~<4~MMc (1) 
r;xv --~ ~-f i- O (5.9) 
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Remarks. 1. Essentially the same Liapunov argument (but without 
mentioning the word "supermartingale") is given by Nummelin (ref. 20, 
Proposition 5.21 ). 

2. For the Cayley rooted tree of order q, Propositions 4.1 and 5.1 
give exactly the same bound; hence we have the equalities 

sup spec(P [' 1 • = sup essential spec(P) 

= sup essential spec(P) 

= 1 1 [1 - (flq),/~]2 (5.10) 

Thus, for the Cayley rooted tree, the aggregated chain _P does reflect 
the slowest modes of the original chain P (in contrast to Examples 4.1 
and 4.2). 

ACKNOWLEDGMENTS 

We would like to thank Jean Bricmont and Joel Lebowitz for 
suggesting that we rewrite the Introduction to make it more comprehen- 
sible (they are not to blame if we have failed). 

This work was supported in part by NSF grants PHY-8413569 and 
DMS-8705599. 

REFERENCES 

1. K. Binder, ed., Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979; 
2nd ed., 1986). 

2. K. Binder, ed., Applications of  the Monte Carlo Method in Statistical Physics (Springer, 
Berlin, 1984; 2nd ed., 1987). 

3. A. Berretti and A. D. Sokal, J. Stat. Phys. 40:483 (1985). 
4. J. Goodman and A. D. Sokal, Phys. Rev. Lett. 56:1015 (1986). 
5. S. Caracciolo and A. D. Sokal, J. Phys. A 19:L797 (1986). 
6. N. Madras and A. D. Sokal, J. Star. Phys. 50:109 (1988). 
7. G. F. Lawler and A. D. Sokal, Trans. Am. Math. Sac. 309:557 (1988). 
8. A. D. Sokal and L. E. Thomas, J. Star. Phys. 51:907 (1988). 
9. A. D. Sokal and L. E. Thomas, Lower bounds on the autocorrelation time of a reversible 

Markov chain, with applications to statistical mechanics, in preparation. 
10. A. D. Sokal, Geometric ergodicity and L p spectra for Markov chains, in preparation. 
11. A. D. Sokal, in Vlllth International Congress on Mathematical Physics, R. S6n6or and 

M. Mebkhout, eds. (World Scientific, Singapore, 1987). 
12. R. G. Edwards and A. D. Sokal, Phys. Rev. D 38:2009 (1988). 
13. A. J. Guttmann, T. R. Osborn, and A. D. Sokal, ./. Phys. A 19:2591 (1986). 
14. Ph. de Forcrand, F. Koukiou, and D. Petritis, J. Stat. Phys. 45:459 (1986). 
15. Ph. de Forcrand, F. Koukiou, and D. Petritis, J. Star. Phys. 49:223 (1987). 



828 Sokal and Thomas 

16. J. M. Pureza, C. Arag~o de Carvalho, and S. L. A. de Quieroz, J. Phys. A 20:4409 (1987). 
17. A. J. Guttmann and T. R. Osborn, aT. Phys. A 21:513 (1988). 
18. G. F. Lawler and A. D. Sokal, in preparation; B. Duplantier, private communication. 
19. K. L. Chung, Markov Chains with Stationary Transition Probabilities, 2rid ed. (Springer, 

New York, 1967). 
20. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators (Cam- 

bridge University Press, Cambridge, 1984). 
21. Z. ~id~.k, Czech. Math. J. 14:438 (1964). 
22. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973). 
23. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups (American Mathematical 

Society, Providence, Rhode Island, 1957). 
24. P. R. Halmos, A Hilbert Space Problem Book, 2nd ed. (Springer, New York, 1982). 
25. R. Holley, Ann. Prob. 13:72 (1985). 
26. J. G. Kemeny and J. L. Snell, Finite Markov Chains (Springer, New York, 1976). 
27. M. Iosifescu, Finite Markov Processes and Their Applications (Wiley, Chichester, 1980). 
28. C. Kipnis and S. R. S. Varadhan, Commun. Math. Phys. 104:1 (1986). 
29. J. W. Essam and M. E. Fisher, Rev. Mod. Phys~ 42:271 (1970). 
30. W. G. Sullivan, Z. Wahrseh. Verw. Gebiete 67:387 (1984). 
31. L. R. Shenton, Proc. Camb. Phil. Soe. 51:442 (1955). 
32. J. G. Mauldon, Am. Math. Monthly 94:423 (1987). 
33. J. Keilson, Markov Chain Models--Rarity and Exponentiality (Springer, New York, 1979). 
34. D. C. Brydges, J. Fr/Shlich, and A. D. Sokal, Commun. Math. Phys. 91:141 (1983). 
35. G. Slade, Commun. Math. Phys. 110:661 (1987). See also T. Hara and G. Slade, to be 

published. 
36. R. Cogburn, Ann. Prob. 3:191 (1975). 
37. L. E. Thomas and Z. Yin, J. Math. Phys. 27:2475 (1986). 
38. J. M. Hammersley and K. W. Morton, J. Roy. Stat. Soc. B 16:23 (1954); J. M. Hammersley, 

Proc. Camb. Phil. Soc. 53:642 (1957). 


