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Exponential Convergence to Equilibrium
for a Class of Random-Walk Models
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We prove exponential convergence to equilibrium (L? geometric ergodicity) for
a random walk with inward drift on a sub-Cayley rooted tree. This random-
walk model generalizes a Monte Carlo algorithm for the self-avoiding walk
proposed by Berretti and Sokal. If the number of vertices of level N in the tree
grows as cy~pu¥N?~1, we prove that the autocorrelation time 7 satisfies
(NYPSTSNYI
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1. INTRODUCTION

The study of dynamic critical phenomena in statistical mechanical model
systems is of interest for two reasons. First, and most obviously, to the
extent that the mathematical dynamics is a reasonable model of a real
physical dynamics, the conclusions are of direct physical interest. A second
and more subtle reason arises out of the widespread use of dynamic Monte
Carlo methods as a tool for studying the static properties of statistical
mechanical systems.*) Monte Carlo studies of critical phenomena have
been greatly hampered by critical slowing down: the autocorrelation time 1
of the Monte Carlo stochastic process grows to infinity as the critical point
is approached, which leads to a corresponding growth in the statistical
error bars.? The rate of growth of t is thus a crucial factor in determining
the statistical efficiency of the Monte Carlo algorithm.

! Department of Physics, New York University, New York, New York 10003.

2 Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903.

3 Each block of data of length ~2t can be considered, roughly speaking, to contribute one
“statistically independent” data point. Therefore, the “effective sample size” from a Monte
Carlo run of length n is ~n/21, resulting in statistical error bars of order (¢/n)2. For a more
detailed treatment, see ref. 1, Sections 1.2.3 and 1.2.4, and ref. 3, Section 4.1.
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The present paper is one of a series by the authors and their
collaborators*'?) aimed at studying the dynamic critical behavior of
Monte Carlo algorithms in statistical mechanics and quantum field theory.
In this paper we study a problem—random walk with inward drift on a
countable rooted graph—that is a generalization of a Monte Carlo
algorithm for the self-avoiding walk (SAW) proposed by Berretti and
Sokal® and used subsequently by several groups.(*!7

The Berretti-Sokal algorithm generates self-avoiding walks with one
endpoint fixed at the origin and the other endpoint free, in a variable-length
ensemble controlled by a monomer activity f; as § approaches the critical
point f,, the average walk length {(N) tends to infinity. The elementary
moves of the algorithm are to delete the last bond of the walk (AN = —1)
or to append one bond to the end of the walk (AN = +1); the relative
probabilities of these two moves are chosen so as to leave invariant the
Gibbs measure 7.

Now the space of all self-avoiding walks (of arbitrary length) starting
at the origin and ending anywhere has the structure of a rooted tree: the
root is the zero-step walk, and a walk «' is declared to be a child of w if it
is a one-step extension of w. It is then easy to see that the Berretti-Sokal
algorithm is precisely a random walk with inward drift on this tree.

We can now abstract the situation: given an arbitrary countable
rooted graph G (satisfying certain growth restrictions) and an “activity” f,
we define on G the “Gibbs” measure 7, and the corresponding random
walk with inward drift. The question is now: For which graphs G does this
random walk have exponential convergence to equilibrium (r < oo) for all
B <B.? And if there is exponential convergence to equilibrium, how does
the autocorrelation time t behave as f— .7

We are unable to answer these questions in general, but for a very
interesting class of graphs—the sub-Cayley rooted trees—we prove rigorous
upper and lower bounds on t which are close to, but not quite, sharp. A
connected rooted graph @ is said to be sub-Cayley if, for each vertex xe G,
the rooted graph of descendants of x (with x as its root) is isomorphic to a
rooted subgraph of G. The key fact is that the space of all SAWs is a sub-
Cayley rooted tree: this expresses the fact that any segment of a self-
avoiding walk must itself be self-avoiding. We are thus able to analyze a
class of Markov chains which includes as a special case the Berretti-Sokal
algorithm for SAWs,

To state our main result, assume for simplicity that the number of
vertices of level N in the tree grows as c,~ u’"N7~1; here y is a “critical
exponent” and the sub-Cayley property implies that y > 1. Then we prove
that

(NYESTSAND!HY (1.1)



Exponential Convergence to Equilibrium 799

(Note that in the SAW case y is believed to be quite close to 1: y=43/32 in
d=2, ~1.16 in d=3, and =1 in d>4.) We had originally hoped to prove
the Berretti-Sokal‘® conjecture t ~ (N )2 but in fact we are not able to do
s0,* and this for a very good reason: it is probably false!*® The exact
dynamic critical behavior in this model is thus an open question.

For general graphs G, we can offer only some partial results: a lower
bound 1 = (N )? and an upper bound which in general does not extend all
the way to the critical point. In fact, we give an example—a “maximally
unbalanced tree””—in which exponential convergence to equilibrium
breaks down well before the critical point. Thus, upper bounds on 7 near
the critical point require some structural hypothesis on the graph G; being
a sub-Cayley rooted tree is sufficient but presumably far from necessary. It
is an open problem to find a weaker sufficient condition.

Finally, we mention that very similar results (more general but slightly
weaker) have been obtained concurrently by Lawler and Sokal,'”’ using
very different methods.

2. PRELIMINARIES

In this section we review briefly the theory of discrete-time Markov
chains on a countable state space,’®) with emphasis on the L? spectral
properties of the transition probability operator. Most of this theory can be
generalized to Markov chains on an arbitrary (measurable) state space®®
and to continuous-time Markovian jump processes, but we shall not need
this here.

Consider a Markov chain on a countable state space S, with transition
probability matrix P={p(i = )}, jes={Pi}ijes- Let pJ?=(P"), be the
n-step transition probability from i to j. Then the Markov chain is said to
be irreducible if for each pair i, je S there exists an n >0 for which p{» > 0.
The chain is said to be irreducible and aperiodic if for each pair i, je S there
exists an ng=no(J, j) such that p{’ >0 for all n > ny(i, j). All the chains to
be considered in this paper are irreducible.

Let m;=E,;[,] be the mean hitting time to state j starting in state i.
(If j=i, this is the mean return time from state i to itself.) For an
irreducible chain, it can be shown'?) that if m,; < co for at least one state i,
then in fact m,;; < co for all pairs 7, j. A Markov chain with this property is
said to be positive-recurrent.

* An early claim by one of us!!) to have proven t ~ (N} turned out, on closer inspection, to
be mistaken.
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A probability measure n= {n,},.s on S is said to be a stationary
distribution for the Markov chain if

Lmpy=m, (2.1)

for all je S. The basic limit theorem for Markov chains is the following
(see, e.g., ref. 19):

Theorem 2.1. Let P be the transition matrix for an irreducible
Markov chain. Then:

(a) A stationary distribution exists if and only if the chain is positive-
recurrent. In this case the stationary distribution is unique, and it is given
by n;=1/m,;.

(b) limy_, (I/N)XN_, p§)=m; for all i, j.

(c) If the chain is aperiodic, then lim, _, ., p" =, for all i, ;.

Thus, an irreducible positive-recurrent Markov chain converges to
equilibrium as time goes to infinity, irrespective of the initial state. Much
work has been done on the rate of convergence to equilibrium (see, e.g.,
ref. 20 and the references cited there); the present paper is a further
contribution to that question.

From now on we assume that the Markov chain is irreducible and
positive-recurrent, and we let = denote the unique stationary distribution.
Let /7(n), 1 < p < 00, denote the Banach space of complex-valued functions
on the state space S having finite norm

[S,m | ()71 i 1<p<w o)

I/ ””E{sumf(i)l i p=oo

In particular, /*(n) is a Hilbert space with inner product
(f, 8)= Z m.f()* g(i) (23)
Let I be the expectation operator
(II1)(i) EZ m; f(J) for all i (2.4)
j

On each space /#(x), IT is an idempotent contraction with range equal to
the constant functions; on /%(n) it is self-adjoint (hence an orthogonal
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projection). Now define the action of the transition probability matrix on
functions by

(B =Y pyS () (2.5)

It is not hard to prove the following facts"):

Proposition 2.2. Let P be the transition probability for an
irreducible positive-recurrent Markov chain with stationary distribution .
Fix pe[1, co], and consider the action of P on the space /”(n). Then:

(a) The operator P is a contraction. (In particular, its spectrum lies
in the closed unit disk.)

(b) 1 is a simple eigenvalue of P, as well as of its adjoint P*, with
eigenvector equal to the constant function 1. (In particular, PIT=IIP =11.)

(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of
P (and of P*) on the unit circle.

The goal of this paper is to prove, for certain Markov chains, that the spec-
trum of P [ 1+ (or equivalently P— IT) on /?(n) stays strictly away from
the unit circle. As will now be explained, this corresponds to a uniform
exponential decay of all autocorrelation functions (for L? observables).

Consider the Markov chain started in its equilibrium distribution =;
let X,, X;,..€ .S be the successive states of the Markov chain. Let f be a
real-valued function in /*(m). Then {f(X,)} is a stationary stochastic
process with mean

Be= <f(X,)>=;n,-f(i) (2.6)
and unnormalized autocorrelation function®
Cp(t)= (X)) f(Xsi 1)) — w7
=;f(i)[n,-p,‘-j'"’— w1 f(J)
= (Jf (P—1)" f) 2.7)

Typically, C,(r) decays exponentially (~e~!"*) for large ¢; we define the
exponential autocorrelation time

T = lim sup

ex e Y= 28
v =100 SUD O (28)

*In the statistics literature, this is called the autocovariance function.
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and
Texp = SUP Texp, s {2.9)
felm)
Thus, t.,, is the relaxation time of the slowest mode in the system (it might
be +00). We now show that 7., is directly related to the spectral radius of
pP-I

Proposition 2.3. r(P—IT)=exp(—1/Tq)

Proposition 2.3 is an immediate consequence of (2.7) together with the
following generalization of the spectral radius formula:

Proposition 2.4. Let X be a complex Banach space, and let A be a
bounded linear operator on X. Then

r(A)= lim }A"|"Y"= inf || 4A™||*" (2.10a)
n-—»co nx1
= sup lim sup || 4"x] """ (2.10b)
xeX n—-
= sup limsup|{/, 4"x )| (2.10c)

xeX,le X* n— oo

If X is a Hilbert space, then also

r(A) = sup lim supl(x, 4"x)|'/" (2.10d)
xeX n-ow

Proof. The first line is the well-known spectral radius formula.
[ Sketch of proof: An analyticity argument shows that

lim sup | 4"|'* < r(4) < inf || 4™*"
n— o nzl
(ref. 22, pp. 235-237); alternatively, one can use submultiplicativity to show
that lim,,_ ., [4"|'"=inf,. , ||4"| """ and then continue with the rest of the
analyticity argument (ref. 23, pp. 124-125).]
Clearly, for all xe X and /e X'*,

lim sup | I, A”x>|" < lim sup || 4"x||*”* <lim sup | 4" *"

h— oo n-— oo n— 0

On the other hand, if

A>c(A)= sup lLimsup [{], A"x )"

xeX,leX* n- oo

then the sequence {1 "/, A"x>}> , is bounded for all xe X and /e X*.
By the uniform boundedness theorem, it follows that the sequence
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{A7" 4"}, is bounded, hence that limsup,_ . ||4"]|Y*<A. Since

4> c(A) was arbitrary, we conclude that lim sup, _, ., [|4"]|"" < c(A).
If X is a complex Hilbert space, we have by the polarization identity

(x, 47y) =% L{(x+ »), 47(x + ¥)) = ((x — »), 4"(x — y))]

—é [{(x + ip), A"(x + ) = ((x = ip), A"(x = iy))] (2.11)

so that
sup lim sup |(x, A”y)|" < sup lim sup |(x, 4"x)|*" |
x,yeX n-ow xeX n-—o
Remark. This proof is implicit in Halmos (ref. 24, pp. 232-233) and
probably other places.

In general the supremum in (2.10d) cannot be restricted to a dense
subset D c X: take, for example, X =/%(Z), D= vectors of finite support,
and A = shift. However, if 4 is self-adjoint, we have:

Proposition 2.5. Let X be a complex Hilbert space and let 4 be a
bounded self-adjoint operator on X. Then
| Al =r{A)=sup lim sup |(x, 4"x)|'" (2.12a)
xeD n—-o
for any dense set D < X.
If, in addition, X is equipped with a distinguished complex
conjugation® and A4 is reality-preserving, then

|A|l =r(A4)=sup lim sup |(x, A"x)|"" (2.12b)

xeD n-oo

for any dense set D < X,

real*

Proof. It is well known that |A| =r(4). Now let £ ,(-) be the
spectral projections for 4. By definition of r(4) we have E (S,)#0 for all
&> 0, where

S.=[—r(4), —r(d)+¢) U (r(4)—e rA)]

So fix >0 and choose x e D such that E(S,)x #0. Then

(x, A"x)=fi" (x, E.(d1)x) (2.13)

® A complex conjugation is an antilinear map C: X — X which is involutive (C2= I). An
element x € X is called real if Cx = x; we let X,., be the set of all real elements of X, A linear
operator 4 on X is called reality-preserving if Ax is real whenever x is.
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which for n even is
=[r(4)—¢e]" (x, E4(S,)x) (2.14)

with (x, E4(S,)x)= | E4(S,)x|*>0. Since ¢ is arbitrary, the claim (2.12a)
follows.

Now assume that X has a distinguished complex conjugation and that
A is self-adjoint and reality-preserving. Then, if x = y + iz with y, z real, we
have

(x, A"x)=(y, A"y)+ (z, A"z) (2.15)
from which (2.12b) easily follows. |

Remark. Proposition 2.5 is implicit in a paper of Holley on
stochastic Ising models (ref. 25, Lemma 1.13).

Finally, a Markov chain is called reversible’ (with respect to the
measure 7) if

TPy =T;Ps {2.16)

for all 4, jeS. [Summing (2.16} over /, we see that the measure = is
necessarily a stationary distribution for P.] Reversibility is equivalent to
the self-adjointness of P as an operator on the space /%(n). Thus, for rever-
sible Markov chains the spectrum of P lies in the interval [ —1, 1], and 7,,,
is determined by the spectrum of P |1+ closest to either 1 or —1. For
many purposes, however, the spectrum near —1 is of little importance;
only the spectrum near 1 matters.® Therefore, it is worth defining a
modified autocorrelation time t,,, based on the spectrum near +1 only:
-1

L= 2.17
Fexp log[sup spec(P — IT)] (2.17)

(compare Proposition 2.3).

"For the physical significance of this term, see Kemeny and Snell (ref. 26, Section 5.3) or
Tosifescu (ref. 27, Section 4.5).

8 For example, in Monte Carlo work, the statistical errors are proportional to (1 + 4)/(1 — 1),
where 1 is in the spectrum of P [see, e.g., ref. 6, Eqs. (2.19) and (2.23); and see ref. 28 for a
rigorous central limit theorem]. Thus, spectrum near —1 is actually helpful; only spectrum
near +1 corresponds to harmful critical slowing down. Another way of seeing that spectrum
near —1 is harmless is to note that replacing P by (I + P)/2 removes all spectrum near — 1;
algorithmically, this corresponds to randoinly deciding at each time step either to use P or
else to do nothing (each with probability 1/2). Of course, from a practical point of view such
an algorithm would be rather silly—it is just the original algorithm with half of the time
wasted doing nothing—but the fact that it has rapid convergence to equilibrium implies, by
a kind of reductio ad absurdum, that the original algorithm must also have rapid convergence
to equilibrium for all practical purposes.



Exponential Convergence to Equilibrium 805

3. RANDOM WALK WITH INWARD DRIFT
ON A COUNTABLE ROOTED GRAPH

In this section we define our random-walk model and analyze its
properties. Our graph-theoretic terminology generally follows Essam and
Fisher,®® except that our graphs need not be finite.

Let G=(V, E, 0) be a countable, connected, rooted graph with vertex
set V, edge set E, and a distinguished vertex 0, called the root. The level of
a vertex x, denoted |x|, is the number of edges in the shortest path which
connects x to the root. We write ¢, for the number of vertices of level N
(N=0, 1, 2,...). If x is adjacent to y, then |y| must be either |x| — 1, |x], or
|x| + 1; we call y a parent, sibling, or child of x, respectively, and write p(x),
s(x), and ¢(x) for the number of parents, siblings, and children of x. Each
vertex other than the root must have at least one parent. We remark that G
is a tree if and only if each vertex other than the root has precisely one
parent and no siblings. Finally, we say that y is a descendant of x (and that
x is an ancestor of y), denoted x < y, if there exists a path of length | y| that
contains y, x, and the root. Equivalently, y is a descendant of x iff it is
either x itself, or a child of x, or a child of a child of x, etc. We denote by
V. the set of all descendants of x, and by G,.=(V,, E,, x) the associated
rooted graph with x as the root.

Rooted graphs G=(V,E,0) and G'=(V',E',0") are said to be
isomorphic if there is an isomorphism of (¥, E) onto (¥, E’) which takes 0
onto 0. A rooted subgraph of G=(V, E,0) is a rooted graph G, =
(V,, E,,0), where (V,, E,) is a subgraph of (¥, E) containing 0.

A connected rooted graph G = (V, E, 0) is said to be Cayley (resp. sub-
Cayley) if, for each x e V, the rooted graph G, = (V,, E,, x) is isomorphic
to G (resp. to a rooted subgraph of G). One example is the Cayley rooted
tree of order ¢, in which the root has ¢ children, each of these has g
children, and so on indefinitely. Several important examples of sub-Cayley
rooted trees will be given below. Note that every sub-Cayley rooted graph
satisfies the submultiplicativity condition c¢,,, y < cpcy (all M, N).

We now restrict attention to graphs satisfying

sup p(x)SM,< (3.1)
supe(x) <M. < (3.2)

It follows that
p=limsup cy"< M <0 (3.3)

N - o
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We call u the growth factor of the rooted graph G. We define for >0 the
generating function

ZB)= Y f= T cxup (3.4)

xeV N=0

Z(PB) is finite for 0< f< ' and infinite for g>pu~".

Fix now a countable, connected, rooted graph G = (V, E, 0) satisfying
(3.1)(3.2), fix >0, and fix M= M, =sup,[ p(x)+ Pc(x)]. We can then
define a discrete-time Markov chain with state space V having transition
probabilities

M if yisa parentof x
_ ) BM if yisachildofx
P D= (M~ Loy 4 pe 1M if y=x (335)
0 otherwise

We call this Markov chain the standard discrete-time random walk on G
with parameters (B, M). 1t is an irreducible reversible Markov chain with
invariant measure

n(x) = const x B! (3.6)

7 is finite iff Z(f) < co0; in this case the Markov chain is positive-recurrent,
and we normalize 7 to be a probability measure

n(x)=Z(p)~" p™ (3.7)

Our goal in this paper is to prove bounds on the spectrum of P |1+
considered as a (self-adjoint) operator on /*(n). Of particular interest is the
behavior of the spectral gap m=1—sup spec(P [ 1*) as f approaches the
critical point B.=p~".

Similarly, we can define a continuous-time Markovian jump process
with state space " having transition rates

1 if yisaparentof x
J(x, y)=< B if yisachildofx (3.8)
0 otherwise

We call this process the standard continuous-time random walk on G with
parameter B. It is an irreducible reversible Markov process with invariant
measure 7, and is positive-recurrent iff Z(f)< co. Our proofs for the
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discrete-time problem can easily be adapted to prove bounds on the
spectrum of J [ 1+, where J is the infinitesimal generator defined by

TNx) =Y J(x, L)~ f(»)] (3.9)

Examples. 1. Let V be the nonnegative integers Z . , let E be the
nearest-neighbor bonds, and let the root be 0. This rooted graph is in fact
the Cayley rooted tree of order 1. The Markov chain (3.5) is the random
walk with constant drift on Z , with elastic boundary conditions at 0. Fix
0<pB<1=u"" and for simplicity take M = M, =1+ B. Then the spectrum
of P | 1% is the interval [ — A, 4], where

F=2R(1+ )= 1~ KN+ O(CNY ™)

(VY=Y n(x) | =;§%1og 2(p)

(see ref. 3, Appendix A, or ref. 30). For other properties of this example, see
refs. 8, 31, and 32.

2. Let % be a regular lattice’ with coordination number ¢ (e.g.,
¥ =177 with g =2d), and let V be the set of all walks on £ (of arbitrary
length) starting at the origin and ending anywhere. We give V the structure
of a rooted tree by declaring the zero-step walk to be the root and
declaring @’ to be a child of w if it is a one-step extension of @. This tree is
precisely the Cayley rooted tree of order ¢. Some of the properties of the
random walk (3.5) in this case have been computed by Berretti and Sokal
(ref. 3, Appendix A).

3. Same as Example 2, but now let V be the set of all self-avoiding
walks on % which start at the origin and end anywhere. This is a sub-
Cayley rooted tree: every descendant & of w can be written uniquely as'®
d=wow, where w, w' €V, since every segment of a self-avoiding walk
must itself be self-avoiding. However, this is not a Cayley rooted tree, since
not every walk of the form wow’ with w, v eV is self-avoiding. The
discrete-time random walk (3.5) (with M =1+ fig) is the transition matrix
of a Monte Carlo algorithm for self-avoiding walks first proposed by
Berretti and Sokal.®

® A regular lattice is, by definition, a countable Abelian group which is endowed with a trans-
lation-invariant graph structure. The coordination number of a regular lattice is the number
of vertices adjacent to any given vertex; we assume that this number is finite.

' The symbol - denotes concatenation. That is, if @ = (wq,..., wy) and @' = (w},..., oY) with
wo=wy=0, then Wo @' = (Wg,..., Wy, Oy + WY yery W gy + W),
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One rather crude intuition about the behavior of the random walk
(3.5) {or (3.8)] was set forth by Berretti and Sokal.”® They argued that if
one looks only at the level |x|, then this quantity executes a random walk
with drift on the nonnegative integers. (This random walk is not precisely
Markovian, nor are its transition probabilities precisely those of Example 1
above, but no matter.) They then argued, by analogy with Example 1, that
the hitting time to the root should typically be of order (N >?; and since
each visit to the root (or any other chosen state, for that matter) erases
“memory” of the past, the autocorrelation time t should be of order (N )2

A more careful way of expressing this intuition is to consider the
aggregated Markov chain,®>® in which all the states of a given level are
lumped into a single state. The transition matrix of the aggregated chain
can be thought of as (3.5) followed by a randomization operation which
redistributes the walker uniformly around the states of its current level.
This randomization would intuitively be expected to accelerate the con-
vergence to equilibrium, and this can in fact be proven: the spectral gap of
the aggregated chain is a rigorous upper bound on the spectral gap of the
original chain. An analysis of the aggregated chain (under the assumption
cy~u¥N?"1!) then yields the rigorous lower bound T > const x {N>? (see
Section 4).

The autocorrelation time t could, however, be much larger than this
lower bound, if there exist modes which relax significantly more slowly
than the level |x|. Whether or not this occurs depends on the detailed
structure of the graph G, and not only on the {c,}. One way of seeing this
is to note that a walker at a site x # 0 feels a net drift “inward” (i.e., toward
the root) if fec(x) < p(x), and a net drift “outward” (i.e., away from the
root) if fe(x)> p(x). We distinguish three cases:

1. If fe(x) < p(x) for all x#90, then the drift is “uniformly inward,”
and a relatively straightforward Liapunov-function argument can be
employed to prove geometric ergodicity (see Section 5). In particular, this
occurs if f< ML

2. If B> pu~!, then the drift is “on the average outward,” and a finite
invariant measure 7 does not exist. (The Markov chain is thus either nuil-
recurrent or transient; it might be amusing to determine which.)

3. If M-'<B<pu ", then the situation is much more delicate. “On
the average” the drift is inward—that is why there exists an exponentially
decaying invariant measure —but at certain sites x # 0 the local drift may
be outward. In particular, the graph G may contain large connected
regions in which the drift is outward, and this can spoil the geometric
ergodicity (Example 4.1). On the other hand, if G is a sub-Cayley tree, we
shall show that such pathologies cannot occur:
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Theorem 3.1. Let G be a sub-Cayley rooted tree satisfying
(3.1)-(3.2), and let < u'. Define

] B K*—1 ]*1
Ff= s o p A1 (3.10)
1<K*<I()B;t)llj MZ(ﬁK*)“I

(clearly 7> 1). Then the hitting time to the root, ,, satisfies
Ef[r]<w (3.11)
for all x, and the spectrum of P 1+ is contained in the interval
[1—2MyM, 7 '] (3.12)

where My=sup, [ p(x)+ fc(x)].

Theorem 3.1 (together with its consequence, Corollary 3.1) is the main
result of this paper; we now give a brief outline of its proof.

The main thrust of our proof is to show that the hitting times to the
root have an exponentially decaying density, in the sense that £, [r*] <
for some r> 1. (We obtain quantitative bounds on r in terms of f, M, and
the function Z.) First we use the fact that G is a sub-Cayley tree to bound
hitting times from x to the root in terms of hitting times from a child of the
root to the root (Lemmas 3.1-3.3). Next we use a beautiful identity
(Lemma 3.4) to relate hitting times from x to the root, averaged over the
invariant measure 7, to return times from the root to itself. Finally, we use
the explicit transition matrix (3.5) to relate return times from the root to
itself to hitting times from a child of the root to the root (Lemma 3.5).
Putting this all together, we obtain an algebraic inequality for the hitting
time from a child of the root to the root in terms of itself (Lemma 3.6). For
r — 1 sufficiently small, the solution set of this algebraic inequality consists
of two disconnected intervals [1, K;] and [K,, +o0] (Lemma 3.7). Our
goal is to show that the true value lies in the lower of these two intervals.
To do this, we argue as follows: If G is a finite sub-Cayley tree, then
E_[r™] is a continuous extended-real-valued function of r (Lemma 3.8); and
for r=1 it obviously equals 1. Therefore, by continuity, E.[+*] must lie in
the lower of the two intervals whenever r is small enough so that the two
intervals are disconnected (Lemma 3.9). If G is an infinite sub-Cayley tree,
then the foregoing argument can be applied to finite “cutoff” trees G,
yielding bounds on E,.[r™] which are uniform in N; and these uniform
bounds can then be carried over to the original tree G (Lemma 3.10). This
proves that hitting times to the root decay exponentially; we then use an
argument based on Dirichlet boundary conditions to relate this to the L?
spectrum (Lemmas 3.11 and 3.12).

822/54/3-4-16
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Let us emphasize the logical structure of this proof. For the first half of
the proof (through Lemma 3.7), we obtain bounds relating the expectations
E_[r™] for different x, but for all we know these expectations might be
+ 00! Only through the continuity argument for cutoff trees (Lemmas 3.8
and 3.9) do we obtain bounds which are guaranteed to be finite. Moreover,
these finite bounds are uniform, so the cutoff can be removed.!' Arguments
of this type have been used in other areas of mathematical statistical
mechanics and quantum field theory by Brydges ef al.®* and by Slade.*>

We now proceed with the proof of Theorem 3.1, Some of the lemmas
below are stated in greater generality than we shall really need; the aim is
to show their “natural” context. We need a few definitions: If G=(V, E) is
a graph, we say that a Markov chain with state space ¥ is a Markov chain
on G if its transition matrix P={p,}, ., satisfies p,; =0 whenever i j
with {i, j} ¢ E. (By abuse of language, we shall often fail to distinguish
between G and V.) For any Markov chain and any subset 4 of the state
space, we define the hitting time 1, =min{s>1: X,e€ 4}; note that 7, >1
always, even if X,e 4. Finally, we assume that the sub-Cayley rooted tree
G 1s nontrivial, i.e., contains at least one vertex other than the root.

Lemma 3.1. Let P={p,}, . be the transition matrix for a
discrete-time Markov chain on a countable tree T. Let S be a connected
subset of T (ie., a subtree), and define the restricted transition matrix

PP= {Pg}i,jes by

s_ [Py it s (3.13)
Py {pii+Zk¢Spik if i=j

Then, for each xe 8, there exists a coupled (non-Markovian) stochastic
process X, = (X3, X7) on S x T such that:

. X5=XI=x

2. {X%} is Markovian with transition matrix PS.

3. {XT} is Markovian with transition matrix P.

4. Xs=XTfor r<tD=min{u: XT¢S}.

5. For any set A< 8 P =mn{rz1X’ed} <1 =
min{r>1: XTe A}.

1 Otherwise put: We state Lemmas 3.1-3.7 for general sub-Cayley trees, but we only use them
for finite sub-Cayley trees. For finite state space it can be proven by general arguments that
E. [rv] < w for some r> 1, but this is insufficient for our purposes, since we need bounds
which are uniform in N. To this end we employ Lemmas 3.1-3.7 together with the continuity
argument of Lemmas 3.8-3.10.
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Proof. For each history {X7} of the Markov process P (with initial
condition x), define {X¥} to be the subsequence of {X7} consisting of
those entries which are in S. It is not hard to see that {X¥} is Markovian
with transition probability P°. (The key fact is that since T is a tree and S
is connected, whenever the process {X7} leaves S it must reenter S at the
same point from which it left.) Facts 4 and 5 are then obvious. ||

Corollary. The condition
ELPS)[',‘[A] SEiP)[rtA]
holds for all xe S, A< S, and r>=1.

Lemma 3.2. Consider a discrete-time Markov chain whose state
space is a countable tree 7. Let x#y be points in 7, and let
X = Xg, X1, X, =y be the unique self-avoiding path in T from x to y.
Then, for any r >0,

n—1
E [r]= H E, [ro1] (3.14)
i=0
Proof. This is an immediate consequence of the strong Markov
property. |

Lemma 3.3. For the random walk (3.5) on a sub-Cayley rooted
tree,

Ex[rtparem(.x)] < max Ey[rﬂ)] = K(r) (315)
[yl=1

and
E [ro]<K(r)™ (3.16)

for any r>=1 and any x #0.

Proof. The first inequality is an immediate consequence of the sub-
Cayley hypothesis and the “translation invariance” of (3.5), together with
Lemma 3.1. The second inequality is an immediate consequence of the first,
together with Lemma 3.2. |

Lemma 3.4. For the random walk (3.5),

Eolrel<r+(r—1) ¥ BHE[r] (3.17)

x#0

for any r > 1; equality holds if the right-hand side is finite.
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Proof. For any x we have

E[r*]=r Y P(x, y)E[r*]+rP(x,0) (3.18)
y#0
(just let the Markov chain take one step starting at x and keep track of
where it lands). In particular, if the right-hand side of (3.17) is finite, then
E _[r®] is finite for all x. Summing (3.18) against the invariant measure !
and interchanging the order of summation (everything is nonnegative), we
obtain

LAMELT=rE X BP( y) L] +r L FP( 0)

x y#0

=r Y BVE,[ro] +r (3.19)
y#0
where on the second line we twice used 3, B P(x, y)=p". Since by
hypothesis ¥, .4 8"”'E,[r*] <o, we can rearrange (3.19) to deduce
equality in (3.17). On the other hand, if the right-hand side of (3.17) is
infinite, the inequality is obvious. ||

Remarks. 1. With a little more work, it can be shown that equality
holds in (3.17) even if the right-hand side is infinite.

2. Relation (3.17) is a special case of a more general formula holding
for irreducible positive-recurrent Markov chains:

Y mx) ELf(t)]1=n(4) f(1)+ ¥ n(x) E.L(4)z)]  (320)
xeA x¢ A
where A4 is an arbitrary nonempty set, f is an arbitrary real-valued function
on {1,2,3,.} satisfying mild regularity conditions (e.g., f monotonic or
bounded will do), and (4f)(n)=f(n+1)— f(n). See Cogburn (ref. 36,
Lemma 3.4) for a proof. Some important special cases of (3.20) are

Y, w(x)E [t,]=1 (3.21)
Y owx) E[t3]1=1+2 Y n(x)E.[7,] (3.22)
x€A x¢ A

Y m(x)ELr*]l=rn(4)+(r—1) Y =n(x)E.[r**] (3.23)
x€A x¢A

In particular, (3.21) is familiar from renewal theory. See, e.g., Nummelin
(ref. 20, Chapter 5) for applications.
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Lemma 3.5. For the random walk (3.5),

M—Bc(0) B
EJrvl=————r+-—r E[ro] (3.24a)
M M Iylz=1 '
>r+§—; [K(r)—1] (3.24b)

for any r= 1.

Proof. The equality is just the special case x=0 of (3.18). The
inequality holds because E,[r™] = K(r) for at least one child y of the root,
and E,[r™]>r>1 for all the others. |

Lemma 3.6. For the random walk (3.5) on a sub-Cayley rooted
tree,

M

K(r)<1 +ﬁr

(r—DIZ(pK(r))—1] (3.25)

for any r= 1.
Proof. This is an immediate consequence of Lemmas 3.3-3.5. |}

Lemma 3.7. Consider the random walk (3.5) on a sub-Cayley
rooted tree. Let K* be any number in the interval 1 < K* < (Bu)~", and
define

. g K*—1 !

(clearly #*>1). Then, for any &> 0, there exists d >0 such that 1 <r<
r* —¢ implies K(r)¢ (K*— 9, K*].

Proof. If K(r)<K*, then Z(BK(r)) < Z(fK*)< co. It then follows
immediately from (3.25) that K(r)<K*—95, where &= (eM/fr*?)
[Z(BK*)—1]. 1}

Lemma 3.8. For any irreducible Markov chain on a finite state

space S, any initial distribution «, and any nonempty set 4 < S, the quan-
tity E,[#*] is a continuous function of r (» > 0) with values in [0, + oo ].

Proof. An irreducible finite Markov chain is recurrent, so 7, < o0
with probability 1. Thus

f=EL1= 3 a4
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with a,= P,[7,=n]>0. Now define R=Iliminf, , ,, a,; ¥ Clearly, f(r) is
an increasing function of r >0 which is finite for 0<r < R and equal to
+ oo for r> R. Moreover, f is an analytic (hence continuous) function in
the disk |r] <R, which has (by the Vivanti-Pringsheim theorem) a
singularity at r=R.'? So all that remains to be proven is that
lim,; z f(r)= +o0. Now

Pa[TAzn]=Pa[TA>n—1]—Poc[TA>n]
=0, (PLye)" "' 1) — (o, (PLe)" 1) (3.27)

where 1, is the operator of multiplication by the characteristic function
%.4c- Now multiply both sides of (3.27) by r” and sum from n=1 to infinity:
both sides certainly converge for |r| <1, and we obtain there

F(r)=Lo, [(r=1)T—rPL)" " +1]11) (3.28)

By well-known matrix theory, the right-hand side of (3.28) is a rational
function of r; and by analytic continuation, it must equal f(r) throughout
the region of analyticity |r] < R. It follows that f has a pole at r = R, so that

lim,; z f(r)= +o0. |

Lemma 3.9. Consider the random walk (3.5) on a finite sub-
Cayley rooted tree. Choose any number K* > 1, and define r* by (3.26).
Then, for all r in the interval | <r<r*, we have K(r) < K*

Proof. By Lemma38, K(r)=max,_,E/[r*] is a continuous
function of r; and clearly K(1)=1 < K*, By Lemma 3.7, there is a forbid-
den interval [ K* — 4, K*] in which K(r) cannot lie for 1 <r < r*. It follows
that K(r) must lie below this forbidden interval for all such r. By continuity,
the bound K(r) < K* holds also for r=r* |

Lemma 3.10. Consider the random walk (3.5) on a sub-Cayley
rooted tree (finite or infinite). Let K* be any number in the interval
l<K*<(fu)~", and define r* by (3.26). Then, for all r in the interval
1 <r<r*, we have K(r) < K*.

Proof. For each N1, let G be the rooted subgraph of G con-
sisting of all the vertices of level <N together with the edges connecting
them. It is easily seen that G is a finite sub-Cayley rooted tree.
Moreover, Zsm < Z; and hence rEwm=rk Now let r be in the interval
1<r<r By Lemma 3.9, we have

EC[r*] < K*

12 This statement is true also in the case R= o0, by Liouville’s theorem (since f is a non-
constant entire function). But this observation is unnecessary, since if R = oo, the proof of
the lemma is already complete.
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for each vertex y with |y| =1, for all N. Now, since GV c GPc ... G,
fwe can employ the argument in Lemma 3.1 to construct a coupled (non-
Markovian) stochastic process with state space G’ x G@ x ... x G whose
marginals are the random walks (3.5) on G*¥) and G, and in which 7{¢") <
70 < .. <@, Tt then follows by the monotone convergence theorem
that

E©@[r™]= ]}gnw E@™[r]<k*  forall r<r* |1

We can now optimize over K* e (1, (Bu) '). Define 7 by (3.10); it then
follows from Lemmas 3.10 and 3.3 and Eq. (3.24a) that E,[r™] < oo for all
x. This completes the proof of the first half of Theorem 3.1.

The remainder of the proof is a straightforward argument based on
Dirichlet boundary conditions:

Lemma 3.11. Let P, be the (sub-Markovian) matrix obtained
from P by deleting the row and column corresponding to 0 [P with
Dirichlet conditions imposed at 07]. Then P, is a self-adjoint operator on
I*(z, V\{0}) with norm <7~ "

Proof. The self-adjointness of P, is obvious. Note next that
(PR1)(x) = P [1o>n] <7~ "*DE[F] (3.29)
Thes, for any  supported on a finite set of points,
[, P e, i opl < UL Ph ¥ 1D 2,5 (o)
<z Y e )(Pp1)(x)

xesupp ¥

SFOUIEL L wlx) EJLFe] (330

Xx € supp ¥

where Y| =sup, [¥(x)|. Since such functions  are dense in
I*(z, Y\ {0}), it follows from Proposition 2.5 that |P,|| <7 ' |

Lemma 3.12. The supremum of the spectrum of P [ 1+ is <Pl
Proof. Let ¢ €1+ and set ¢ = ¢(0). Then
(¢, Pd)pmy= (¢ —c1), P(¢—c1)) oy — ¢l
((¢—cl), Pp(p—c1))r 1 g0y, — lel?
<[ Ppll g — 1 Fny — lel?
= [Ppll (Il Fomy + l€|?) = |cI?
<Pl gl oy (3.31)

This proves the claim. |

i
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Remark. Lemma 3.12 can alternatively be proven using the min-max
theorem®”) or as a corollary of a more general theorem on Dirichlet boun-
dary conditions.!”’

Completion of the Proof of Theorem 3.7. All that remains to be
proven is that the infimum of the spectrum of P is =1 —-2M /M. To see
this, note that, by (3.5),

1
P=I+4-0 (3.32)

where @ is self-adjoint and negative-semidefinite. Since |P|=1 when
M=M, we must have spec(Q)c[—2M,,0]. Hence, spec(P)c
[1-2M/M, 1]. |

Theorem 3.1 gives a quantitative bound on the spectral gap, and hence
on the modified autocorrelation time t,,. This bound takes a simple form
if we assume that c,, the number of vertices in the tree at level N, has the
asymptotic behavior ¢y~ pu N7~ for some “critical exponent” y, as is
believed to occur for self-avoiding walks. Note that the submultiplicativity
property cp, nSCyCy, valid for every sub-Cayley rooted graph,
implies®® that cy > u”; so y, if it exists, must be >1.

Corollary 3.1. Under the hypotheses of Theorem 3.1, we have

. Z(BK*)—1
inf

T L — = =
B i<xr<pmt K¥—1

exp =

(3.33)

If, in addition, cy < AuVN7~! for N sufficiently large, then there exists a
constant C, (independent of f) such that

Top S Ci(1—pp) ™! (3.34)
Finally, if the ¢ further satisfy

1
liminf— [Ney—(N—1)pcy_1=I>0 (3.35)
(Y

N— oo
then there exists a constant C, (independent of f) such that
réxp<C2<N>1+y (336)
for B1 "', where
d

7 log Z(B) (3.37)

(N>=Z(B) S Np¥ey=
N=0
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Remark. 1If ¢y~ p N~ then (3.35) holds with I"=1y.

Proof. Inequality (3.33) is basically the translation of Theorem 3.1
into the language of autocorrelation times: it follows from
exp(—1/t,,) <7 ' and the elementary inequality log(l—x)< —x for
O0<x<gL

Next assume that ¢y < Au¥N?~! for N sufficiently large. Then

Z(BK*)= 3 (BK*)" ey

N=0

N

A Z (BuK*)N N*~! + polynomial in f8

A Z (BuK*)V (—1)N<_y> + polynomial in
N=0 N
= A'(1 — uK*)~7 + polynomial in f
<A"(1— PuK*)™? (3.38)
uniformly for 0 < fuK* < 1. Using this inequality to estimate the right-

hand side of (3.33) and computing the resulting infimum, we obtain (3.34).
Finally, by hypothesis (3.35), for any ¢ >0 we have

2x-o[Ney—(N—1)ucy_:] BN
2 N0 cnBY

polynomial in 8

R0 CNﬁN

(I=Bu)N> =

>(M—e)+ (339)

But ¢y > u" by the sub-Cayley hypothesis, so S%_,cpf¥=(1—pu)
hence

lim inf(1 — BNy > 1 (3.40)

from which (3.36) follows. |

The result of Theorem 3.1 can be extended to a slightly larger class of
Markov chains by a well-known comparison principle: Let P, and P, be
transition probability matrices on the same state space which are reversible
with respect to the same measure n. Assume that the off-diagonal matrix
clements of P, dominate those of P, ie., (P,),, <(P,),, for all x # y. Then
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1
S =P rw=3 Y TlPr)yy [f00) = f(0)1 (3.41)

X, ¥

<3 T 7P, )~ 10

X, ¥

= (f7 (I_ P2)f)12(n) (3-42)

for any fel?*(rn), so that P, > P, in the sense of quadratic forms. The
Rayleigh-Ritz principle (or the min-max theorem) then implies that
sup spec(P; | 1*) = sup spec(P, [ 1+); hence, that 1., , > T.,,,.

In particular, consider two rooted graphs G,=(V, E;,0) and G,=
(V, E,, 0) with the same vertex set ¥ and with E;c F,. Assume, in
addition, that |x|g = |x|s, for each xeV, ie., the distance from x to 0 is
the same for both graphs. [Equivalently, G, is obtained from G, by adding
edges (E,\ E,) which connect vertices on the same or neighboring levels.] In
this case we call G, a compatible supergraph of G, and G, a compatible
subgraph of G,. Both graphs have the same {c,} and hence the same .
Now fix 0< < pu~" and M =sup,[p,(x)+ Bcy(x)], where p,(x) and c,(x)
are the number of parents and children of x, respectively, in G,. Let P, and
P, be the corresponding standard transition probabilities defined by (3.5).
Then, clearly, (P;),, < (P,),, for all x# y, and hence 7.,,(G,) < Texp(G1)-

Otherwise put, let G=(V, E, 0) be a countable rooted graph satisfying
(3.1)-(3.2), and fix 0<B<pu ! and M =sup,[p(x)+ Bc(x)]. Then

T,o(G) <inf 1l (H) (3.43)
H

where the infimum is taken over all compatible subgraphs H< G. In
particular, we have:

Corollary 3.2. The results of Theorem 3.1 and Corollary 3.1
remain valid for any countable rooted graph which contains a sub-Cayley
rooted tree as a compatible subgraph.

Proof. 1t suffices to note that the bound (3.10)/(3.33) depends only
on the {cy}, which are the same for both graphs. |

Unfortunately, we do not know any convenient algorithm for testing
whether a given rooted graph G satisfies the hypotheses of Corollary 3.2.

Remarks. 1. A similar result for finite graphs with counting
measure is proven in ref. 37.

2. Analogous considerations apply to pairs of continuous-time rever-
sible Markovian jump processes with transition rates satisfying J,(x, y) <
Jy(x, y) for all x # y.
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4. LOWER BOUNDS ON THE AUTOCORRELATION TIME,
BY RAYLEIGH-RITZ

We now turn to the variational lower bound on the autocorrelation
time t,,. Consider an arbitrary countable, connected, rooted graph G
satisfying (3.1)—(3.2). Let e, be the total number of edges which connect
vertices of level N—1 to those of level N. Thus,

ex= 3 plx)= Y cx) (4.1)
|x]=N |x] =N—1
In particular, e, =0 and cy<ey<M,cy for N>1 (so ey=cyfor N=11if

G is a tree).
Now define the aggregated Markov chain®>® to have state space
Z_. =1{0,1,2,.} and transition probabilities

= €xn
N—1)= 4.2
PN, N—1)=7- (422)
5 Ben
N+ 1) =21 4.2b
P(N,N+1) Me (4.2b)
= €N Bew i1
P(N,N)=1~— —_— 4.2
(N, V)= 13— (420)
This is an irreducible reversible Markov chain with invariant measure
(N} = const x f¥c, (4.3)

7 is a finite measure iff Z(f) < 0. Now 1, of the original Markov chain is
bounded below by t,, of the aggregated chain, since for any trial function
fel*(Z ., , =) we can define a trial function e /*(V, n) by f(x) = f(|x|), and

(fs 1)12( V) = (fa 1)12(Z+,i) (4.4a)
(fa f)/Z(V,n)z (f_a f)lZ(Z+,ﬁ) (4-4b)
- 1 il - -
(5 Pf)zz(V,n\ =/, f)zl(z+,ﬁ)_‘m‘) Z eNﬁN[f(N)—f(N" 1)]2
=(f, I_’f),z(zhﬁ) (4.4c)

Taking the supremum in (4.4c) over all £ which are normalized and
orthogonal to 1, we find that

1y (/. Pf) 1
exp () =sup spec(P ['17) > sup <777 = exp (r;xp<aggregated>>

(4.5)

which implies the above assertion.
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On the other hand,
sup spec(P | 1*) > sup essential spec(P) = sup essential spec(P) (4.6)

and in some cases the supremum of the essential spectrum for the
aggregated chain can be determined exactly. For example:

Proposition 4.1. Let f>0. Suppose that cy,ey>0 for all N> 1
and that

lim ¥l (4.7)
N—-> CN
lim X=g (438)
N—oow Cy
Then
sup essential spec(P) =1 ——aM [1—(Bu)'*]? (4.9)

Remarks. 1. If G is a tree, then a=1.
2. This proposition also covers the case > !, for what it is worth.

Corollary 4.1. Under the same hypotheses, for f1u ' we have

-1 4M
! 2 - 1_ -2 1_ —1
TeXp log{l—(a/M)[]-([f,u)l/z]Z} a ( ﬁlu) +0(( ﬂ”) )
(4.10)
If, in addition, the ¢, satisfy
1
limsup— [Ney—(N— VD pey_1=I'< w0 {4.11)
N—>w N
then
I;XPZC<N>2 (4.12)

for some C >0 which is independent of f as BT u~1

Proof of Corollary 4.1 Assuming Proposition 4.7. The first
inequality follows immediately from Proposition 4.1 together with (4.6).
Now assume (4.11). Then, for any ¢> 0,

Yol Ney— (N—1)ucy_,] .BN
1-— N>=

polynomial in §

2 N=0 CNBN

<(F+e)+ (4.13)
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The second term is bounded as T u~", so

lim sup(1 — u){N) < o0 (4.14)
Btu!

from which (4.12) follows. ||

Proof of Proposition 4.1. Let U:I*(Z.,7)—!*Z,,counting
measure) be the unitary mapping defined by

(UN(N) = (Bey)'? f(N) (4.15)
We then compute the matrix elements of UPU ™"
_ B e
(UPU )N, N—1)=—b N (4.162)

- 1/2 ,1/2
Mceyey®

1/2
(UPU~ )N, N+ 1) =D&t (4.16b)

172,172
Mcyexs

€N _.BeN+1

pPU-! =1- 4.16
(UPUT)(N, N)=1 ey Mey, (4.16c)
It follows that
— a a
UPU™'=— (Bu)"? 4+ {1 —— [1—(Bu)*? 2}1
U = ) {1 1 ()]
[ (Bp)2] 80+ Q (417)
M
where 4 is the discrete Laplace operator on Z
1 Nz=1
A —)=<" .
(N,N-1) {0’ N0 (4.18a)
A(N,N+1)=1 (4.18b)
-2 N=1
A(N, N)= ’ - )
(N, N) {_1’ N0 (4.18c)
I is the identity matrix, d,=diag(1, 0, 0,...), and
B2 a
0N, N—1)=| gt =7 ()2 | (1=800)  (4198)

ON, N+ 1)=P et _ @ i (4.19b)
SRR A '

a(1+ﬂll)_ €N __,BeN+l a

M Mey Mcey MM

O(N, N)= (4.19c)
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The Laplacian is easily diagonalized by the functions cos k(n+ 1/2),
ke [0, n]; its spectrum is the interval [ —4, 0]. The multiplication operator
0o is rank one, hence compact. The operator Q is a sum of three terms,
each of which is a bounded operator (the identity, left shift, or right shift)
times a function which vanishes at infinity; so Q is compact. It follows that
the essential spectrum of UPU ™!, and hence of P, is the interval

—4a 12 a 12 a 12
| S B 1= L= (™, 1= 0= (50|

We now give two examples which show that 7, (aggregated) can in
some cases be a very poor lower bound for 7.

Example 4.1 (Lawler and Sokal™). Let c,=1,¢,,c;,.. be an
arbitrary sequence of positive integers satisfying limy , , cy= +00 and
SUPysolCysi/cy) <o, and let M, be any integer ZSupy.o(Cy, i/Cn)-
Then there exists a countable rooted tree T= (V, E, 0) such that:

(a) #({x:|x|=N})=cy
(b) sup,e(x)< M,
() SHPSPCC(PFll)>{1_(1—ﬁMC)/M i 0<f<M

1 if MisB<u!

Proof. We construct a “maximally unbalanced” tree having the given
{cy}: the root has ¢, children, which are labeled “eldest,” “second-eldest,”
etc.; these children procreate, beginning with the eldest, each one having
the maximum allowable number of children (M) until ¢, children have
been generated; and so on. [In other words, of the ¢, vertices at level N,
the | ¢y, /M. eldest of these have M children each, the one next-eldest
has ¢y, — M| cy,/M.] children, and the rest have no children.
Moreover, if |x| =]y| and x is “elder” to y, then all the children of x are
elder to all the children of y.] Now let x% be the eldest vertex of level N;
then the tree of descendants of x# contains a complete M -ary rooted tree
of Ky + 1 generations, where K is the largest integer such that ¢y, .= M*
for all 0 <k < K. Therefore, the partial generating function

ZaBy= Y BN (4.20)

yeVs,

satisfies

ZaB)> Y (M) (421)
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Moreover,
Ky>=(inf,.qlog ey i )/log M, — +o0 as N-oow
Now consider the trial function
fv=1x Ve ™ const

where the constant is chosen to make f orthogonal to 1. Then a
straightforward calculation shows that

hLUu-pPf)_ 1 Z(B) - S |
G Mz B ZB) B Za) = S [MEO (M5) ]
(4.22)

Claim (c) follows. §

Thus, for §> M ! it is impossible to prove the existence of an L spec-
tral gap (much less lower bounds on it) given only the {cy}%_, and M_; it
is necessary to have more detailed information about the structure of the
graph G.

Examplie 4.2. Let G, be the complete g-ary rooted tree of N+ 1
generations (ie., levels 0 through N). Let P be its standard transition
matrix with parameters (8, M). Fix a vertex x, of level 1, and define the
trial function f by

0 if x=0
fx)=<1 if xisa descendant of x; (4.23)
—(g—-1)""! otherwise

Then f is orthogonal to 1, and

Z(pH—-1 1
D=1 (4.24)
B q
_ = T 4.25
(5 U=P) )= 05— (4.25)
where
(Bt -1
Z(B) ————————ﬁq_ N (4.26)
Therefore,

sup spec(P [ 1) >

(L) _, 1( fg—1 ) (4.27)

Ly M\(Bg)"—1
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In particular, if 8¢ > 1, then the spectral gap is exponentially small when N
is large.

On the other hand, the aggregated chain for G, has the associated
quadratic form

N—1

ﬁ n _ 2
725 L, (B Fne D= FOOF (428)

=0

(F,(I—P)F)=

which for fg>1 is a random walk on {0, .., N} with constant ourward
drift. But on a finite interval, outward and inward drift are equivalent by
symmetry; for N large, the spectral gap is approximately equal to (/M)
[1—(Bg)~27% by a calculation similar to that performed in the proof of
Proposition 4.1. In particular, the spectral gap does not go to zero as
N — 0.

The physics underlying this example is the following: If fig > 1, there is
an outward drift, and the equilibrium measure n is strongly concentrated
on the leaves {x: |x| = N}. But it is difficult for the random walker to move
from one leaf to another, because to do so it must pass through the highly
improbable states with |x} small (fighting against the drift). On the other
hand, this slow equilibration is not reflected in the aggregated chain, which
measures only the equilibration between sets of fixed |x|.

Example 4.3. Let G=(V, E, 0) be an arbitrary rooted graph, and
let P be its standard transition matrix with parameters (8, M). Let Gy =
(Vw, Ey,0') be the graph defined in Example 4.2. Now form the new graph
G=(VuVy, EOUEyuU{(0,0')},0) by hooking on the root of G as a
child of the root of G. Let P be the corresponding transition matrix with
parameters (f, M); this is well defined (i.e., has nonnegative matrix
elements) provided that M >max[My(G)+ B, 1+ p¢]. Now P and P
clearly have the same essential spectrum. But the trial function constructed
in Example 4.2 (extended to all of G by setting f =0 on G) shows that the
spectral gap of P can be made arbitrarily small, if fg> 1, by taking N
large. This class of examples shows that the spectral gap can in general be
much smaller than the essential spectral gap.

5. UPPER BOUNDS ON THE AUTOCORRELATION TIME,
BY LIAPUNOV FUNCTIONS

Finally, we provide an upper bound on the modified autocorrelation
time and a proof of geometric ergodicity, in the case that the drift is
uniformly inward. Again the setting is that of standard random walk with
parameters (f, M) on a rooted graph G =(V, E, 0) satisfying (3.1)-(3.2).



Exponential Convergence to Equilibrium 825

Proposition 5.1. Assume there exists an &>0 such that
p(x)— Pe(x) = ¢ for all x#0. Then sup spec(P [ 1*)< 1, and in fact

supspec(PrlL)sl—A—Z—kz[j‘jyc[<l+ﬁ;{ >1/2—1] (5.1)

&2 N
=1 gaar O

If, in addition, M > M, =sup.[ p(x)+ fc(x)], then

2
infspecP;l——j]:—j—O> -1 (5.2)

so the process is geometrically ergodic.

Remarks. 1. Clearly, p(x) and ¢(x) can take only finitely many
values [cf. (3.1)-(3.2)], so the first condition of the proposition is
equivalent to the superficially weaker condition p(x)> fic(x) for all x.

2. Summing the hypothesis p(x)— Bc(x)>e¢ with weight ¥ over
x #0, we obtain :

Y BRp(x)— Be(x)] = e[ Z(B)—1] (5.3)

x#0

Now the sum telescopes:

)3 ﬁ'x'[P(X)—ﬂC(X)]=A}ijnw > BMIp(x) = Be(x)]

x#0 x#0
x| <N

= Jim [ fo@—p*t ¥ e

x| =N

< fe(0) (54)

Therefore, Z(f)<1+(B/e) c(0)< oo, so the Markov chain is positive-
recurrent.

Proof of Proposition 5.71. Let

Ya(x)=ol (5.5)

822/54/3-4-17
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with o« > 1. Then, for x #0,

1
(PU) =32 [P~ — 1)+ Pelx)(e— 1)+ MT 4, (x)
< M+ fel)(ock ™ =2) = all 2~ ) (x)
< M+ BM (oo = 2) =1~ )] )

|~

11

Ya(x) (5.6)

—

(a

~

where () > 1 provided that o is sufficiently close to 1. It follows that if
{X(n)} is the Markov process associated with the transition matrix P, then
{ry,(X(n))} is a supermartingale whenever 1 <r <7(a); it will serve as a
kind of Liapunov function in the remainder of the proof.

Consider the process starting at X(0) = x,. Let 7 be the first time that
the process hits the root, and let t,, be the first time that it hits the root or
{x: |x| = N}. Then, by the optional stopping theorem for supermartingales,

a =, (x0) 2 Eo(r™ ¥ (X(1x)))
= E (r*"y(X(ty) = 0)) + «VE ,(r™y(1X(cy)| = N))
2 E(r™)

= E(r) (5.7)

N

whenever a1 and 1 <r<7(a); the last step used the monotone con-
vergence theorem. This implies that if P, is the matrix defined in
Lemma 3.11, then by the same argument used there,

1/2
1Pl <infFe) ' =1 —%ﬁij} [(1 +F;7) - 1] <1 (58)

The bound (5.1) follows immediately by Lemma 3.12.
The reverse bound (5.2) was already proven in the paragraph
surrounding (3.32). 1

Translating (5.1) into the language of autocorrelation times, we obtain

4MM 1
Toxp & ﬁsz C+0<;> (5.9)
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Remarks. 1. Essentially the same Liapunov argument (but without
mentioning the word “supermartingale”) is given by Nummelin (ref. 20,
Proposition 5.21).

2. For the Cayley rooted tree of order g, Propositions 4.1 and 5.1
give exactly the same bound; hence we have the equalities

sup spec(P | 1*) = sup essential spec(P)

= sup essential spec(P)

1 1272
=1-=—1[1- 5.10
1 I [1 ([34) ] (5.10)

Thus, for the Cayley rooted tree, the aggregated chain P does reflect
the slowest modes of the original chain P (in contrast to Examples 4.1
and 4.2).
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